Comptes Rendus
Group Theory/Geometry
Complete reducibility and separable field extensions
[Complète réductibilité et extensions de corps séparables]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 495-497.

Soit G un groupe algébrique linéaire réductif connexe. Le but de cette Note est de répondre à une question de J-P. Serre concernant le comportement par extensions de corps séparables, de la notion de G-réductibilité complète qu'il a introduite. Une partie de nos arguments repose sur la solution récente de la conjecture du centre de Tits pour les immeubles sphériques du groupe réductif G.

Let G be a connected reductive linear algebraic group. The aim of this note is to settle a question of J-P. Serre concerning the behaviour of his notion of G-complete reducibility under separable field extensions. Part of our proof relies on the recently established Tits Centre Conjecture for the spherical building of the reductive group G.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.04.013

Michael Bate 1 ; Benjamin Martin 2 ; Gerhard Röhrle 3

1 Department of Mathematics, University of York, York YO10 5DD, United Kingdom
2 Mathematics and Statistics Department, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
3 Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
@article{CRMATH_2010__348_9-10_495_0,
     author = {Michael Bate and Benjamin Martin and Gerhard R\"ohrle},
     title = {Complete reducibility and separable field extensions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {495--497},
     publisher = {Elsevier},
     volume = {348},
     number = {9-10},
     year = {2010},
     doi = {10.1016/j.crma.2010.04.013},
     language = {en},
}
TY  - JOUR
AU  - Michael Bate
AU  - Benjamin Martin
AU  - Gerhard Röhrle
TI  - Complete reducibility and separable field extensions
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 495
EP  - 497
VL  - 348
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2010.04.013
LA  - en
ID  - CRMATH_2010__348_9-10_495_0
ER  - 
%0 Journal Article
%A Michael Bate
%A Benjamin Martin
%A Gerhard Röhrle
%T Complete reducibility and separable field extensions
%J Comptes Rendus. Mathématique
%D 2010
%P 495-497
%V 348
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2010.04.013
%G en
%F CRMATH_2010__348_9-10_495_0
Michael Bate; Benjamin Martin; Gerhard Röhrle. Complete reducibility and separable field extensions. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 495-497. doi : 10.1016/j.crma.2010.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.013/

[1] M. Bate; B. Martin; G. Röhrle A geometric approach to complete reducibility, Invent. Math., Volume 161 (2005) no. 1, pp. 177-218

[2] M. Bate; B. Martin; G. Röhrle On Tits' centre conjecture for fixed point subcomplexes, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 353-356

[3] M. Bate; B. Martin; G. Röhrle; R. Tange Complete reducibility and separability, Trans. AMS, Volume 362 (2010) no. 8, pp. 4283-4311

[4] M. Bate; B. Martin; G. Röhrle; R. Tange Closed orbits and uniform S-instability in geometric invariant theory, 2009 (preprint) | arXiv

[5] M. Bate; B. Martin; G. Röhrle; R. Tange Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, 2009 (preprint) | arXiv

[6] A. Borel; J. Tits Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., Volume 27 (1965), pp. 55-150

[7] B. Leeb; C. Ramos-Cuevas The center conjecture for spherical buildings of types F4 and E6 (preprint) | arXiv

[8] B. Mühlherr; J. Tits The Centre Conjecture for non-exceptional buildings, J. Algebra, Volume 300 (2006) no. 2, pp. 687-706

[9] D. Mumford; J. Fogarty; F. Kirwan Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, Springer-Verlag, Berlin, 1994

[10] C. Ramos-Cuevas The center conjecture for thick spherical buildings (preprint) | arXiv

[11] G. Rousseau Immeubles sphériques et théorie des invariants, C.R.A.S., Volume 286 (1978), pp. 247-250

[12] J-P. Serre, La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs, Séminaire au Collège de France, résumé dans [17, pp. 93–98], 1997

[13] J-P. Serre, Complète réductibilité, Séminaire Bourbaki, 56ème année (2003–2004) no. 932

[14] J. Tits, Groupes semi-simples isotropes, Colloq. Théorie des Groupes Algébriques, Bruxelles, 1962

[15] J. Tits Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Math., vol. 386, Springer-Verlag, 1974

[16] J. Tits, Quelques cas d'existence d'un centre pour des ensembles de chambres qui sont convexes, non vides et ne contiennent pas de paires de chambres opposées, Séminaire au Collège de France, résumé dans [17, pp. 98–101], 1997

[17] J. Tits, Théorie des groupes, Résumé des Cours et Travaux, Annuaire du Collège de France, 97e année (1996–1997) 89–102

Cité par Sources :

Commentaires - Politique