[Inégalités fines de Carleman pour des problèmes paraboliques singuliers et application à des problèmes inverses]
We address the question of Lipschitz stability results in inverse source problems for the heat equation perturbed by a singular inverse-square potential
On étudie la stabilité Lipschitzienne pour des problèmes inverses de détermination d'une source pour l'équation de la chaleur perturbée par un potentiel singulier de la forme
Accepté le :
Publié le :
Judith Vancostenoble 1
@article{CRMATH_2010__348_13-14_801_0, author = {Judith Vancostenoble}, title = {Sharp {Carleman} estimates for singular parabolic equations and application to {Lipschitz} stability in inverse source problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {801--805}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.06.001}, language = {en}, }
TY - JOUR AU - Judith Vancostenoble TI - Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems JO - Comptes Rendus. Mathématique PY - 2010 SP - 801 EP - 805 VL - 348 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2010.06.001 LA - en ID - CRMATH_2010__348_13-14_801_0 ER -
%0 Journal Article %A Judith Vancostenoble %T Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems %J Comptes Rendus. Mathématique %D 2010 %P 801-805 %V 348 %N 13-14 %I Elsevier %R 10.1016/j.crma.2010.06.001 %G en %F CRMATH_2010__348_13-14_801_0
Judith Vancostenoble. Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 801-805. doi : 10.1016/j.crma.2010.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.001/
[1] Remarks on the inverse square potential in quantum mechanics, Birmingham, Ala., 1983 (North-Holland Math. Stud.), Volume vol. 92, North-Holland, Amsterdam (1984), pp. 31-35
[2] Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., Volume 46 (2007) no. 5, pp. 1849-1881
[3] Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19
[4] Carleman estimates and null controllability for boundary-degenerate parabolic operators, C. R. Acad. Sci. Sér. I Math., Volume 347 (2009) no. 3–4, pp. 147-152
[5] P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for degenerate parabolic operators with applications, in press
[6] P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, in press
[7] Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. in PDE 33, Volume 11 (2008), pp. 1996-2019
[8] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Seoul, Korea, 1996
[9] Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, Volume 14 (1998) no. 5, pp. 1229-1245
[10] Inverse Source Problems, Mathematical Surveys and Monographs, vol. 34, American Mathematical Society, Providence, RI, 1990
[11] Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2004 (iv+282 pp)
[12] Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 325-362
[13] On a global estimate in a linear inverse hyperbolic problem, Inverse Problems, Volume 12 (1996) no. 6, pp. 995-1002
[14] J. Tort, Determination of source terms in a degenerate parabolic equation from a locally distributed observation, C. R. Acad. Sci. Sér., in press
[15] Null controllability for the heat equation with singular inverse-square potentials, J. Funct. Anal., Volume 254 (2008) no. 7, pp. 1864-1902
[16] Hardy inequalities, observability and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1508-1532
[17] The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 103-153
- Carleman estimates for the structurally damped plate equations with Robin boundary conditions and applications, Applicable Analysis, Volume 101 (2022) no. 13, pp. 4668-4685 | DOI:10.1080/00036811.2020.1866172 | Zbl:1496.35117
- Global Carleman estimates for degenerate parabolic operators with applications, Memoirs of the American Mathematical Society, 1133, Providence, RI: American Mathematical Society (AMS), 2016 | DOI:10.1090/memo/1133 | Zbl:1328.35114
- A strongly ill-posed problem for a degenerate parabolic equation with unbounded coefficients in an unbounded domain
of , Inverse Problems, Volume 29 (2013) no. 2, p. 025007 | DOI:10.1088/0266-5611/29/2/025007 - Determination of the insolation function in the nonlinear Sellers climate model, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 29 (2012) no. 5, pp. 683-713 | DOI:10.1016/j.anihpc.2012.03.003 | Zbl:1270.35283
- Lipschitz stability in inverse source problems for singular parabolic equations, Communications in Partial Differential Equations, Volume 36 (2011) no. 7-9, pp. 1287-1317 | DOI:10.1080/03605302.2011.587491 | Zbl:1229.35329
- Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Continuous Dynamical Systems - S, Volume 4 (2011) no. 3, p. 761 | DOI:10.3934/dcdss.2011.4.761
- Determination of source terms in a degenerate parabolic equation from a locally distributed observation, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 23-24, pp. 1287-1291 | DOI:10.1016/j.crma.2010.10.031 | Zbl:1208.35177
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier