Comptes Rendus
Topology
On the commutator length of a Dehn twist
Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 923-926.

We show that on a nonorientable surface of genus at least 7 any power of a Dehn twist is equal to a single commutator in the mapping class group and the same is true, under additional assumptions, for the twist subgroup, and also for the extended mapping class group of an orientable surface of genus at least 3.

Nous démontrons que sur une surface non orientable de genre au moins 7 toute puissance d'un twist de Dehn est égale à un unique commutateur dans le groupe de difféotopies et que ceci est vrai, sous conditions additionnelles, pour le sous-groupe généré par les twists, aussi bien que pour l'extension du groupe de difféotopies d'une surface orientable de genre au moins 3.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.07.011

Błażej Szepietowski 1

1 Institute of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland
@article{CRMATH_2010__348_15-16_923_0,
     author = {B{\l}a\.zej Szepietowski},
     title = {On the commutator length of a {Dehn} twist},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {923--926},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.011},
     language = {en},
}
TY  - JOUR
AU  - Błażej Szepietowski
TI  - On the commutator length of a Dehn twist
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 923
EP  - 926
VL  - 348
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.011
LA  - en
ID  - CRMATH_2010__348_15-16_923_0
ER  - 
%0 Journal Article
%A Błażej Szepietowski
%T On the commutator length of a Dehn twist
%J Comptes Rendus. Mathématique
%D 2010
%P 923-926
%V 348
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2010.07.011
%G en
%F CRMATH_2010__348_15-16_923_0
Błażej Szepietowski. On the commutator length of a Dehn twist. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 923-926. doi : 10.1016/j.crma.2010.07.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.011/

[1] V. Braungardt; D. Kotschick Clustering of critical points in Lefschetz fibrations and the symplectic Szpiro inequality, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 3217-3226

[2] H. Endo; D. Kotschick Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math., Volume 144 (2001), pp. 169-175

[3] S. Gervais Presentation and central extensions of mapping class groups, Trans. Amer. Math. Soc., Volume 348 (1996), pp. 3097-3132

[4] M. Korkmaz First homology group of mapping class group of nonorientable surfaces, Math. Proc. Cambridge Philos. Soc., Volume 123 (1998), pp. 487-499

[5] M. Korkmaz; B. Ozbagci Minimal number of singular fibers in a Lefschetz fibration, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 1545-1549

[6] M. Korkmaz Stable commutator length of a Dehn twist, Michigan Math. J., Volume 52 (2004), pp. 23-31

[7] D. Kotschick Quasi-homomorphisms and stable lengths in mapping class groups, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 3167-3175

[8] W.B.R. Lickorish Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc., Volume 59 (1963), pp. 307-317

[9] W.B.R. Lickorish On the homeomorphisms of a non-orientable surface, Proc. Cambridge Philos. Soc., Volume 61 (1965), pp. 61-64

[10] J. Powell Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc., Volume 68 (1978), pp. 347-350

[11] M. Stukow The twist subgroup of the mapping class group a nonorientable surface, Osaka J. Math., Volume 46 (2009), pp. 717-738

Cited by Sources:

Comments - Policy