[Sur certaines caractérisations des formes de Wulff]
Étant donné une fonction positive F sur qui vérifie une condition de convexité convenable, nous considérons la r-ième courbure moyenne anisotrope pour les hypersurfaces de qui est une généralisation de la r-ième courbure moyenne usuelle . En utilisant une formule intégrale de type Minkowski pour les hypersurfaces compactes due à H.J. He et H. Li, nous introduisons de nouvelles caractérisations des formes de Wulff.
For a positive function F on which satisfies a suitable convexity condition, we consider the r-th anisotropic mean curvature for hypersurfaces in which is a generalization of the usual r-th mean curvature . By using an integral formula of Minkowski type for compact hypersurface due to H.J. He and H. Li, we introduce some new characterizations of the Wulff shape.
Accepté le :
Publié le :
Leyla Onat 1
@article{CRMATH_2010__348_17-18_997_0, author = {Leyla Onat}, title = {Some characterizations of the {Wulff} shape}, journal = {Comptes Rendus. Math\'ematique}, pages = {997--1000}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.07.028}, language = {en}, }
Leyla Onat. Some characterizations of the Wulff shape. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 997-1000. doi : 10.1016/j.crma.2010.07.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.028/
[1] The Wulff-shape minimizes an anisotropic Willmore functional, Interf. Free Bound., Volume 6 (2004) no. 3, pp. 351-359
[2] Characterizations of the Riemannian n-spheres, Amer. J. Math., Volume 81 (1959), pp. 691-708
[3] Inequalities, Cambridge University Press, Cambridge, 1934
[4] Integral formula of Minkowski type and new characterization of the Wulff shape, Acta Math. Sinica, Volume 24 (2008), pp. 697-704
[5] Some integral formulas for closed hypersurfaces, Math. Scand., Volume 2 (1954), pp. 86-294
[6] Geometry and stability of surfaces with constant anisotropic mean curvature, Indiana Univ. Math. J., Volume 54 (2005), pp. 1817-1852
[7] Stability of the Wulff shape, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3661-3667
[8] The relative differential geometry of nonparametric hypersurfaces, Duke Math. J., Volume 43 (1976), pp. 705-721
[9] Crystalline variational problems, Bull. Amer. Math. Soc., Volume 84 (1978), pp. 568-588
Cité par Sources :
Commentaires - Politique