We present new estimates in E. Stein's Fourier restriction problem for curved hyper-surfaces in and also on the mapping properties of the more general class of oscillatory integral operators introduced by L. Hörmander.
Nous présentons de nouvelles estimations dans le problème de E. Stein sur la restriction de Fourier à des hyper-surfaces à courbure dans ainsi que sur les intégrales oscillatoires introduites par L. Hörmander.
Accepted:
Published online:
Jean Bourgain 1; Lawrence Guth 1
@article{CRMATH_2011__349_3-4_137_0, author = {Jean Bourgain and Lawrence Guth}, title = {Bounds on oscillatory integral operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {137--141}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.12.004}, language = {en}, }
Jean Bourgain; Lawrence Guth. Bounds on oscillatory integral operators. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 137-141. doi : 10.1016/j.crma.2010.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.12.004/
[1] On the multilinear restriction and Kakeya conjectures, Acta Math., Volume 196 (2006), pp. 261-302
[2] Some new estimates on oscillatory integrals, Annals Math. St., vol. 42, Princeton University Press, 1995, pp. 83-112
[3] Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis, Annals Math. St., vol. 112, Princeton University Press, 1986
[4] A sharp bilinear restriction estimate for the paraboloids, GAFA, Volume 13 (2003), pp. 1359-1384
[5] An improved bound for Kakeya-type maximal functions, Rev. Mat. Iber., Volume 11 (1995) no. 3, pp. 651-674
Cited by Sources:
Comments - Policy