[Les hyperharmoniques sont-ils entiers ? Une réponse partielle via les petits intervalles contenant des nombres premiers]
In a recent work, the authors have used Bertrand's postulate to give a partial answer to the conjecture of Mező which says that the hyperharmonic numbers – iterations of partial sums of harmonic numbers – are not integers. In this Note, using small intervals containing prime numbers, we prove that a great class of hyperharmonic numbers are not integers.
Dans un travail antérieur, les auteurs ont utilisé le postulat de Bertrand pour répondre, partiellement, à la conjecture de Mező selon laquelle les nombres hyperharmoniques – itérations de sommes partielles de nombres harmoniques – ne sont pas des entiers. Dans cette Note, nous montrons qu'une grande classe de nombres hyperharmoniques ne sont pas des entiers en utilisant les petits intervalles contenant des nombres premiers.
Accepté le :
Publié le :
Rachid Aït Amrane 1 ; Hacène Belbachir 2
@article{CRMATH_2011__349_3-4_115_0, author = {Rachid A{\"\i}t Amrane and Hac\`ene Belbachir}, title = {Are the hyperharmonics integral? {A} partial answer via the small intervals containing primes}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--117}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.12.015}, language = {en}, }
TY - JOUR AU - Rachid Aït Amrane AU - Hacène Belbachir TI - Are the hyperharmonics integral? A partial answer via the small intervals containing primes JO - Comptes Rendus. Mathématique PY - 2011 SP - 115 EP - 117 VL - 349 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2010.12.015 LA - en ID - CRMATH_2011__349_3-4_115_0 ER -
Rachid Aït Amrane; Hacène Belbachir. Are the hyperharmonics integral? A partial answer via the small intervals containing primes. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 115-117. doi : 10.1016/j.crma.2010.12.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.12.015/
[1] Non-integerness of class of hyperharmonic numbers, Ann. Mathematicae et Informaticae, Volume 37 (2010), pp. 7-11
[2] Prime numbers in logarithmic intervals, 17 Sept. 2008 | arXiv
[3] The Book of Numbers, Springer-Verlag, New York, 1996
[4] The generalization and proof of Bertrand's Postulate, Internat. J. Math. & Math. Sci., Volume 10 (1987) no. 4, pp. 821-824
[5] Almost all short intervals containing prime numbers, Acta Arith., Volume LXXVLI (1996)
[6] On the interval containing at least one prime number, Proc. Japan Acad., Volume 28 (1952), pp. 177-181
[7] About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budapest, Sect. Math., Volume 50 (2007), pp. 13-20
[8] Short effective intervals containing primes, J. Number Theory, Volume 98 (2003), pp. 10-33
[9] Sharper bounds for the Chebyshev functions
[10] Bemerkung über die harmonische Reihe, Monatsch. Math. Phys., Volume 26 (1915), pp. 132-134
Cité par Sources :
Commentaires - Politique