We give an elementary proof of the Kontsevich conjecture that asserts that the iterations of the noncommutative rational map are given by noncommutative Laurent polynomials.
Nous proposons une démonstration élémentaire d'une conjoncture de Kontsevich qui affirme que l'itération de l'application non-commutative rationnelle est donnée par des polynômes de Laurent non-commutatifs.
Accepted:
Published online:
Arkady Berenstein 1; Vladimir Retakh 2
@article{CRMATH_2011__349_3-4_119_0, author = {Arkady Berenstein and Vladimir Retakh}, title = {A short proof of {Kontsevich's} cluster conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {119--122}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2011.01.004}, language = {en}, }
Arkady Berenstein; Vladimir Retakh. A short proof of Kontsevich's cluster conjecture. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 119-122. doi : 10.1016/j.crma.2011.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.004/
[1] Quantum cluster algebras, Adv. Math., Volume 195 (2005) no. 2, pp. 405-455
[2] Cluster algebras III: Upper and lower bounds, Duke Math. J., Volume 126 (2005) no. 1, pp. 1-52
[3] Discrete non-commutative integrability: Proof of a conjecture by M. Kontsevich, Int. Math. Res. Not. (2010), pp. 4042-4063
[4] Cluster algebras I: Foundations, J. Amer. Math. Soc., Volume 15 (2002), pp. 497-529
[5] The Laurent phenomenon, Adv. in Appl. Math., Volume 28 (2002) no. 2, pp. 119-144
[6] Cluster algebras II: Finite type classification, Invent. Math., Volume 154 (2003), pp. 63-121
[7] Free Rings and Their Relations, Academic Press, London, 1985
[8] Non-commutative cluster mutations, Dokl. Nat. Acad. Sci. Belarus, Volume 53 (2009) no. 4, pp. 27-29
[9] A. Usnich, Non-commutative Laurent phenomenon for two variables, preprint, , 2010. | arXiv
Cited by Sources:
☆ The authors were supported in part by the NSF grant DMS #0800247.
Comments - Policy