[Des entiers hyperharmoniques existent]
We show that there exist infinitely many hyperharmonic integers, and this refutes a conjecture of Mező. In particular, for , the hyperharmonic number is integer for 153 different values of , where the smallest is equal to .
Révisé le :
Accepté le :
Publié le :
Doğa Can Sertbaş 1
@article{CRMATH_2020__358_11-12_1179_0, author = {Do\u{g}a Can Sertba\c{s}}, title = {Hyperharmonic integers exist}, journal = {Comptes Rendus. Math\'ematique}, pages = {1179--1185}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.137}, language = {en}, }
Doğa Can Sertbaş. Hyperharmonic integers exist. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1179-1185. doi : 10.5802/crmath.137. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.137/
[1] Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform., Volume 37 (2010), pp. 7-11 | MR | Zbl
[2] Are the hyperharmonics integral? A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 3-4, pp. 115-117 | DOI | MR | Zbl
[3] Hyperharmonic numbers can be rarely integers, Integers, Volume 18 (2018), A43 | Zbl
[4] The Book of Numbers, Springer, 1996 | Zbl
[5] Almost all Hyperharmonic Numbers are not Integers, J. Number Theory, Volume 171 (2017), pp. 495-526 | DOI | MR | Zbl
[6] Divisibility Properties of Hyperharmonic Numbers, Acta Math. Hung., Volume 154 (2018) no. 1, pp. 147-186 | DOI | MR | Zbl
[7] Über die harmonische Reihe, Mat. Fiz. Lapok, Volume 27 (1918), pp. 299-300 | Zbl
[8] About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 50 (2007), pp. 13-20 | MR | Zbl
[9] GitHub Repository for Hyperharmonic Integers, 2020 (https://github.com/dsertbas/hyperharmonic-integers)
[10] SageMath, the Sage Mathematics Software System (Version 8.3), 2018 (https://www.sagemath.org)
[11] Bemerkung über die harmonische reihe, Monatsh. Math. Phys., Volume 26 (1915), pp. 132-134 | DOI | Zbl
Cité par Sources :
Commentaires - Politique