Comptes Rendus
Théorie des nombres
Hyperharmonic integers exist
[Des entiers hyperharmoniques existent]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1179-1185.

We show that there exist infinitely many hyperharmonic integers, and this refutes a conjecture of Mező. In particular, for r=64·(2α-1)+32, the hyperharmonic number h33(r) is integer for 153 different values of α(mod748440), where the smallest r is equal to 64·(22659-1)+32.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.137
Classification : 11B83, 05A10, 11B75

Doğa Can Sertbaş 1

1 Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, 58140, Sivas, TURKEY.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_11-12_1179_0,
     author = {Do\u{g}a Can Sertba\c{s}},
     title = {Hyperharmonic integers exist},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1179--1185},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.137},
     language = {en},
}
TY  - JOUR
AU  - Doğa Can Sertbaş
TI  - Hyperharmonic integers exist
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1179
EP  - 1185
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.137
LA  - en
ID  - CRMATH_2020__358_11-12_1179_0
ER  - 
%0 Journal Article
%A Doğa Can Sertbaş
%T Hyperharmonic integers exist
%J Comptes Rendus. Mathématique
%D 2020
%P 1179-1185
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.137
%G en
%F CRMATH_2020__358_11-12_1179_0
Doğa Can Sertbaş. Hyperharmonic integers exist. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1179-1185. doi : 10.5802/crmath.137. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.137/

[1] Rachid Ait Amrane; Hacène Belbachir Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform., Volume 37 (2010), pp. 7-11 | MR | Zbl

[2] Rachid Ait Amrane; Hacène Belbachir Are the hyperharmonics integral? A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 3-4, pp. 115-117 | DOI | MR | Zbl

[3] Emre Alkan; Haydar Göral; Doğa Can Sertbaş Hyperharmonic numbers can be rarely integers, Integers, Volume 18 (2018), A43 | Zbl

[4] John Horton Conway; Richard K. Guy The Book of Numbers, Springer, 1996 | Zbl

[5] Haydar Göral; Doğa Can Sertbaş Almost all Hyperharmonic Numbers are not Integers, J. Number Theory, Volume 171 (2017), pp. 495-526 | DOI | MR | Zbl

[6] Haydar Göral; Doğa Can Sertbaş Divisibility Properties of Hyperharmonic Numbers, Acta Math. Hung., Volume 154 (2018) no. 1, pp. 147-186 | DOI | MR | Zbl

[7] Jozsef Kürschák Über die harmonische Reihe, Mat. Fiz. Lapok, Volume 27 (1918), pp. 299-300 | Zbl

[8] István Mező About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 50 (2007), pp. 13-20 | MR | Zbl

[9] Doğa Can Sertbaş GitHub Repository for Hyperharmonic Integers, 2020 (https://github.com/dsertbas/hyperharmonic-integers)

[10] The Sage Developers SageMath, the Sage Mathematics Software System (Version 8.3), 2018 (https://www.sagemath.org)

[11] Leopold Theisinger Bemerkung über die harmonische reihe, Monatsh. Math. Phys., Volume 26 (1915), pp. 132-134 | DOI | Zbl

  • Doğa Can Sertbaş Density results on hyperharmonic integers, Journal of the Mathematical Society of Japan, Volume 77 (2025) no. 1, pp. 189-219 | DOI:10.2969/jmsj/91179117 | Zbl:8012149
  • Çağatay Altuntaş On the finiteness of some p-divisible sets, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, Volume 73 (2024) no. 4, p. 1011 | DOI:10.31801/cfsuasmas.1441894
  • Çağatay Altuntaş On the p-adic valuation of generalized harmonic numbers, Bulletin of the Korean Mathematical Society, Volume 60 (2023) no. 4, pp. 933-955 | DOI:10.4134/bkms.b220399 | Zbl:1539.11045
  • Çağatay Altuntaş; Haydar Göral; Doğa Can Sertbaş The difference of hyperharmonic numbers via geometric and analytic methods, Journal of the Korean Mathematical Society, Volume 59 (2022) no. 6, pp. 1103-1137 | DOI:10.4134/jkms.j210630 | Zbl:1522.11014
  • Haydar Göral; Doğa Can Sertbaş Applications of class numbers and Bernoulli numbers to harmonic type sums, Bulletin of the Korean Mathematical Society, Volume 58 (2021) no. 6, pp. 1463-1481 | DOI:10.4134/bkms.b201045 | Zbl:1496.11034

Cité par 5 documents. Sources : Crossref, zbMATH

Commentaires - Politique