[Des entiers hyperharmoniques existent]
We show that there exist infinitely many hyperharmonic integers, and this refutes a conjecture of Mező. In particular, for
Révisé le :
Accepté le :
Publié le :
Doğa Can Sertbaş 1

@article{CRMATH_2020__358_11-12_1179_0, author = {Do\u{g}a Can Sertba\c{s}}, title = {Hyperharmonic integers exist}, journal = {Comptes Rendus. Math\'ematique}, pages = {1179--1185}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.137}, language = {en}, }
Doğa Can Sertbaş. Hyperharmonic integers exist. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1179-1185. doi : 10.5802/crmath.137. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.137/
[1] Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform., Volume 37 (2010), pp. 7-11 | MR | Zbl
[2] Are the hyperharmonics integral? A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 3-4, pp. 115-117 | DOI | MR | Zbl
[3] Hyperharmonic numbers can be rarely integers, Integers, Volume 18 (2018), A43 | Zbl
[4] The Book of Numbers, Springer, 1996 | Zbl
[5] Almost all Hyperharmonic Numbers are not Integers, J. Number Theory, Volume 171 (2017), pp. 495-526 | DOI | MR | Zbl
[6] Divisibility Properties of Hyperharmonic Numbers, Acta Math. Hung., Volume 154 (2018) no. 1, pp. 147-186 | DOI | MR | Zbl
[7] Über die harmonische Reihe, Mat. Fiz. Lapok, Volume 27 (1918), pp. 299-300 | Zbl
[8] About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 50 (2007), pp. 13-20 | MR | Zbl
[9] GitHub Repository for Hyperharmonic Integers, 2020 (https://github.com/dsertbas/hyperharmonic-integers)
[10] SageMath, the Sage Mathematics Software System (Version 8.3), 2018 (https://www.sagemath.org)
[11] Bemerkung über die harmonische reihe, Monatsh. Math. Phys., Volume 26 (1915), pp. 132-134 | DOI | Zbl
- Density results on hyperharmonic integers, Journal of the Mathematical Society of Japan, Volume 77 (2025) no. 1, pp. 189-219 | DOI:10.2969/jmsj/91179117 | Zbl:8012149
- On the finiteness of some p-divisible sets, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, Volume 73 (2024) no. 4, p. 1011 | DOI:10.31801/cfsuasmas.1441894
- On the
-adic valuation of generalized harmonic numbers, Bulletin of the Korean Mathematical Society, Volume 60 (2023) no. 4, pp. 933-955 | DOI:10.4134/bkms.b220399 | Zbl:1539.11045 - The difference of hyperharmonic numbers via geometric and analytic methods, Journal of the Korean Mathematical Society, Volume 59 (2022) no. 6, pp. 1103-1137 | DOI:10.4134/jkms.j210630 | Zbl:1522.11014
- Applications of class numbers and Bernoulli numbers to harmonic type sums, Bulletin of the Korean Mathematical Society, Volume 58 (2021) no. 6, pp. 1463-1481 | DOI:10.4134/bkms.b201045 | Zbl:1496.11034
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique