Comptes Rendus
Combinatorics/Group Theory
Commutator subgroups of the power subgroups of Hecke groups H(λq) II
Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 127-130.

Let q3 be an odd number and let H(λq) be the Hecke group associated to q. Let m be a positive integer and let Hm(λq) be the m-th power subgroup of H(λq). In this work, we study the commutator subgroups of the power subgroups Hm(λq) of H(λq).

Soit q3 un nombre impair et soit H(λq) le groupe de Hecke associé à q. Soit m un entier positif et soit Hm(λq) le sous-groupe des puissances m-ièmes de H(λq). Dans ce travail, nous étudions les sous-groupes commutateurs des puissances sous-groupes Hm(λq) de H(λq).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.01.003

Recep Sahin 1; Özden Koruoğlu 2

1 Balıkesir Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, 10145 Balıkesir, Turkey
2 Balıkesir Üniversitesi, Necatibey Eğitim Fakültesi, İlkogretim Bölümü, 10100 Balıkesir, Turkey
@article{CRMATH_2011__349_3-4_127_0,
     author = {Recep Sahin and \"Ozden Koruo\u{g}lu},
     title = {Commutator subgroups of the power subgroups of {Hecke} groups $ H({\lambda }_{q})$ {II}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {127--130},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2011.01.003},
     language = {en},
}
TY  - JOUR
AU  - Recep Sahin
AU  - Özden Koruoğlu
TI  - Commutator subgroups of the power subgroups of Hecke groups $ H({\lambda }_{q})$ II
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 127
EP  - 130
VL  - 349
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2011.01.003
LA  - en
ID  - CRMATH_2011__349_3-4_127_0
ER  - 
%0 Journal Article
%A Recep Sahin
%A Özden Koruoğlu
%T Commutator subgroups of the power subgroups of Hecke groups $ H({\lambda }_{q})$ II
%J Comptes Rendus. Mathématique
%D 2011
%P 127-130
%V 349
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2011.01.003
%G en
%F CRMATH_2011__349_3-4_127_0
Recep Sahin; Özden Koruoğlu. Commutator subgroups of the power subgroups of Hecke groups $ H({\lambda }_{q})$ II. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 127-130. doi : 10.1016/j.crma.2011.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.003/

[1] I.N. Cangül; D. Singerman Normal subgroups of Hecke groups and regular maps, Math. Proc. Camb. Phil. Soc., Volume 123 (1998), pp. 59-74

[2] I.N. Cangül; R. Sahin; S. Ikikardes; Ö. Koruoğlu Power subgroups of some Hecke groups. II, Houston J. Math., Volume 33 (2007) no. 1, pp. 33-42

[3] R.J. Evans A new proof on the free product structure of Hecke groups, Publ. Math. Debrecen, Volume 22 (1975) no. 1–2, pp. 41-42

[4] E. Hecke Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichungen, Math. Ann., Volume 112 (1936), pp. 664-699

[5] S. Ikikardes; Ö. Koruoğlu; R. Sahin Power subgroups of some Hecke groups, Rocky Mountain J. Math., Volume 36 (2006) no. 2, pp. 497-508

[6] R. Sahin, Ö. Koruoğlu, Commutator subgroups of the power subgroups of Hecke groups H(λq), Ramanujan J., , in press. | DOI

Cited by Sources:

Comments - Policy