Comptes Rendus
Combinatorics/Dynamical Systems
The shifted primes and the multidimensional Szemerédi and polynomial Van der Waerden theorems
Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 123-125.

In this short note we establish new refinements of multidimensional Szemerédi and polynomial Van der Waerden theorems along the shifted primes.

Nous présentons de nouveaux résultats du type Szemerédi multidimensionnel et Van der Waerden polynomial multidimensionnel le long des ensembles P1 et P+1.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.11.028

Vitaly Bergelson 1; Alexander Leibman 1; Tamar Ziegler 2

1 Department of Mathematics, The Ohio State University, Columbus, OH 43210, United States
2 Department of Mathematics, Technion, Haifa 32000, Israel
@article{CRMATH_2011__349_3-4_123_0,
     author = {Vitaly Bergelson and Alexander Leibman and Tamar Ziegler},
     title = {The shifted primes and the multidimensional {Szemer\'edi} and polynomial {Van} der {Waerden} theorems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {123--125},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.028},
     language = {en},
}
TY  - JOUR
AU  - Vitaly Bergelson
AU  - Alexander Leibman
AU  - Tamar Ziegler
TI  - The shifted primes and the multidimensional Szemerédi and polynomial Van der Waerden theorems
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 123
EP  - 125
VL  - 349
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2010.11.028
LA  - en
ID  - CRMATH_2011__349_3-4_123_0
ER  - 
%0 Journal Article
%A Vitaly Bergelson
%A Alexander Leibman
%A Tamar Ziegler
%T The shifted primes and the multidimensional Szemerédi and polynomial Van der Waerden theorems
%J Comptes Rendus. Mathématique
%D 2011
%P 123-125
%V 349
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2010.11.028
%G en
%F CRMATH_2011__349_3-4_123_0
Vitaly Bergelson; Alexander Leibman; Tamar Ziegler. The shifted primes and the multidimensional Szemerédi and polynomial Van der Waerden theorems. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 123-125. doi : 10.1016/j.crma.2010.11.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.028/

[1] V. Bergelson Ergodic theory and Diophantine problems, Temuco, 1997 (London Math. Soc. Lecture Note Ser.), Volume vol. 279, Cambridge Univ. Press, Cambridge (2000), pp. 167-205

[2] V. Bergelson; A. Leibman Polynomial Van der Waerden and Szemerédi theorems, J. Amer. Math. Soc., Volume 9 (1996), pp. 725-753

[3] V. Bergelson; A. Leibman Set-polynomials and polynomial extension of the Hales–Jewett theorem, Ann. of Math. (2), Volume 150 (1999) no. 1, pp. 33-75

[4] V. Bergelson; R. McCutcheon Recurrence for semigroup actions and a non-commutative Schur theorem, Minneapolis, MN, 1995 (Contemp. Math.), Volume vol. 215, Amer. Math. Soc., Providence, RI (1998), pp. 205-222

[5] N. Frantzikinakis; B. Host; B. Kra Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math., Volume 611 (2007), pp. 131-144

[6] H. Furstenberg; Y. Katznelson An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Anal. Math., Volume 45 (1985), pp. 117-168

[7] H. Furstenberg; B. Weiss Topological dynamics and combinatorial number theory, J. Anal. Math., Volume 34 (1978), pp. 61-85

[8] B. Green; T. Tao Linear equations in primes, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 1753-1850

[9] B. Green, T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math., in press.

[10] B. Green, T. Tao, T. Ziegler, An inverse theorem for the Gowers Us+1[N] norm, preprint.

[11] R. McCutcheon Elemental Methods in Ergodic Ramsey Theory, Lecture Notes in Math., vol. 1722, Springer-Verlag, Berlin, 1999

[12] T. Wooley, T. Ziegler, Multiple recurrence and convergence along the primes, Amer. J. Math., in press.

Cited by Sources:

The first and the third authors are supported by BSF grant No. 2006094. The first and the second authors are supported by NSF grant DMS-0901106.

Comments - Policy