In this Note we prove the equivalence between the Riemannian foliation and each of the following conditions: 1) the lifted foliation on the bundle of r-transverse jets is Riemannian for ; 2) the foliation on the slashed is Riemannian and vertically exact for ; 3) there exists a positively admissible transverse Lagrangian on , the r-transverse slashed jet bundle of a foliated bundle , for .
Dans cette Note on établie lʼéquivanence entre la propriété pour un feuilletage dʼêtre riemannien et chacune des conditions suivantes : 1) le feuilletage rélevé sur lʼespace des jets r-transverses est riemannien pour une certaine valeur de ; 2) le feuilletage rélevé sur lʼespace réduit des jets r-transverses est riemannien et verticalement exact pour une certaine valeur de ; 3) il existe un lagrangien positif, admissible et transvers sur , le fibré réduit des jets r-transverses dʼun fibré vectoriel , pour une certaine valeur .
Accepted:
Published online:
Paul Popescu 1; Marcela Popescu 1
@article{CRMATH_2011__349_7-8_445_0, author = {Paul Popescu and Marcela Popescu}, title = {Foliated vector bundles and {Riemannian} foliations}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--449}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.02.017}, language = {en}, }
Paul Popescu; Marcela Popescu. Foliated vector bundles and Riemannian foliations. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 445-449. doi : 10.1016/j.crma.2011.02.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.017/
[1] Sur la théorie des sous-fibrés vectoriels, C. R. Acad. Sci. Paris, Ser. I, Volume 302 (1986) no. 20, pp. 705-708
[2] New Lagrangian and Hamiltonian. Methods in Field Theory, World Scientific, Singapore, 1997
[3] Finsler foliations of compact manifolds are Riemannian, Differential Geometry and its Applications, Volume 26 (2008) no. 2, pp. 224-226
[4] Lift of the Finsler foliation to its normal bundle, Differential Geometry and its Applications, Volume 24 (2006), pp. 209-214
[5] Riemannian Foliations, Progress in Mathematics, vol. 73, Birhäuser, Boston, 1988
[6] Lagrangians adapted to submersions and foliations, Differential Geometry and its Applications, Volume 27 (2009) no. 2, pp. 171-178
[7] Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001
[8] Feuilletages de type fini compact, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 209-214
Cited by Sources:
Comments - Policy