Comptes Rendus
Partial Differential Equations/Mathematical Physics
Analytic solutions to a strongly nonlinear Vlasov equation
Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 541-546.

We prove the existence for short times of analytic solutions to a Vlasov type equation. The corresponding model is one-dimensional but uses a quite singular force term which involves a full derivative in x of the macroscopic density, making the existence of solutions a difficult question.

Nous démontrons lʼexistence en temps petit de solution analytique à une équation de type Vlasov. Le modèle considéré est mono-dimensionnel mais le terme de force correspondant fait intervenir une dérivée complète de la densité macroscopique. Ceci rend la question de lʼexistence de solution particulièrement délicate.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.03.024

Pierre-Emmanuel Jabin 1; A. Nouri 2

1 Laboratoire Dieudonné, University of Nice-Sophia Antipolis, parc Valrose, 06000 Nice, France
2 Aix-Marseille University, France
@article{CRMATH_2011__349_9-10_541_0,
     author = {Pierre-Emmanuel Jabin and A. Nouri},
     title = {Analytic solutions to a strongly nonlinear {Vlasov} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {541--546},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.024},
     language = {en},
}
TY  - JOUR
AU  - Pierre-Emmanuel Jabin
AU  - A. Nouri
TI  - Analytic solutions to a strongly nonlinear Vlasov equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 541
EP  - 546
VL  - 349
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2011.03.024
LA  - en
ID  - CRMATH_2011__349_9-10_541_0
ER  - 
%0 Journal Article
%A Pierre-Emmanuel Jabin
%A A. Nouri
%T Analytic solutions to a strongly nonlinear Vlasov equation
%J Comptes Rendus. Mathématique
%D 2011
%P 541-546
%V 349
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2011.03.024
%G en
%F CRMATH_2011__349_9-10_541_0
Pierre-Emmanuel Jabin; A. Nouri. Analytic solutions to a strongly nonlinear Vlasov equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 541-546. doi : 10.1016/j.crma.2011.03.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.024/

[1] C. Bardos; P. Degond Global existence for the Vlasov–Poisson equation in 3-space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118

[2] S. Benachour Analyticité des solutions des équations de Vlasov–Poisson, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 16 (1989) no. 1, pp. 83-104

[3] N. Besse; F. Berthelin; Y. Brenier; P. Bertrand The multi water-bag model for collisionless kinetic equations, Kinetic and Related Models, Volume 2 (2009) no. 1, pp. 39-80

[4] F. Bouchut; F. Golse; C. Pallard Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 170 (2003) no. 1, pp. 1-15

[5] R. Di Perna; P.L. Lions Global weak solutions of Vlasov–Maxwell systems, Comm. Pure Appl. Math., Volume 42 (1989), pp. 729-757

[6] P. Ghendrih; M. Hauray; A. Nouri Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions, Kinetic and Related Models, Volume 2 (2009) no. 4, pp. 707-725

[7] R.T. Glassey The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, PA, 1996

[8] R. Glassey; J. Schaeffer The relativistic Vlasov–Maxwell system in two space dimensions, I and II, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 331-354 (355–374)

[9] P.L. Lions; B. Perthame Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991), pp. 415-430

[10] C. Mouhot, C. Villani, On Landau damping, Acta Math., in press, preprint 2009, http://hal.archives-ouvertes.fr/ccsd-00376547.

[11] K. Pfaffelmoser Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differential Equations, Volume 95 (1992), pp. 281-303

[12] J. Schaeffer Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions, Comm. Partial Differential Equations, Volume 16 (1991), pp. 1313-1335

Cited by Sources:

Comments - Politique