We prove the existence for short times of analytic solutions to a Vlasov type equation. The corresponding model is one-dimensional but uses a quite singular force term which involves a full derivative in x of the macroscopic density, making the existence of solutions a difficult question.
Nous démontrons lʼexistence en temps petit de solution analytique à une équation de type Vlasov. Le modèle considéré est mono-dimensionnel mais le terme de force correspondant fait intervenir une dérivée complète de la densité macroscopique. Ceci rend la question de lʼexistence de solution particulièrement délicate.
Accepted:
Published online:
Pierre-Emmanuel Jabin 1; A. Nouri 2
@article{CRMATH_2011__349_9-10_541_0, author = {Pierre-Emmanuel Jabin and A. Nouri}, title = {Analytic solutions to a strongly nonlinear {Vlasov} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {541--546}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.03.024}, language = {en}, }
Pierre-Emmanuel Jabin; A. Nouri. Analytic solutions to a strongly nonlinear Vlasov equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 541-546. doi : 10.1016/j.crma.2011.03.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.024/
[1] Global existence for the Vlasov–Poisson equation in 3-space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118
[2] Analyticité des solutions des équations de Vlasov–Poisson, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 16 (1989) no. 1, pp. 83-104
[3] The multi water-bag model for collisionless kinetic equations, Kinetic and Related Models, Volume 2 (2009) no. 1, pp. 39-80
[4] Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system, Arch. Ration. Mech. Anal., Volume 170 (2003) no. 1, pp. 1-15
[5] Global weak solutions of Vlasov–Maxwell systems, Comm. Pure Appl. Math., Volume 42 (1989), pp. 729-757
[6] Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions, Kinetic and Related Models, Volume 2 (2009) no. 4, pp. 707-725
[7] The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, PA, 1996
[8] The relativistic Vlasov–Maxwell system in two space dimensions, I and II, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 331-354 (355–374)
[9] Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math., Volume 105 (1991), pp. 415-430
[10] C. Mouhot, C. Villani, On Landau damping, Acta Math., in press, preprint 2009, http://hal.archives-ouvertes.fr/ccsd-00376547.
[11] Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data, J. Differential Equations, Volume 95 (1992), pp. 281-303
[12] Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions, Comm. Partial Differential Equations, Volume 16 (1991), pp. 1313-1335
Cited by Sources:
Comments - Politique