Comptes Rendus
Algebraic Geometry
A Note on vector bundles on Hirzebruch surfaces
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 687-690.

In literature, two basic construction methods have been used to study vector bundles on a Hirzebruch surface. On the one hand, we have Serreʼs method and elementary modifications, describing rank-2 bundles as extensions in a canonical way (Brînzănescu and Stoia, 1984 [4,5], Brînzănescu, 1996 [6], Brosius, 1983 [7], Friedman, 1998 [9]), and on the other hand, we have a Beilinson-type spectral sequence (Buchdahl, 1987 [8]). Morally, the Beilinson spectral sequence indicates how to recover a bundle from the cohomology of its twists and from some sheaf morphisms (the differentials of the sequence). The aim of this Note is to show that the canonical extension of a rank-2 bundle can be deduced from the Beilinson spectral sequence of a suitable twist, called the normalization. In the final part we give a cohomological criterion for a topologically trivial vector bundle on a Hirzebruch surface to be trivial. To emphasize the relations and the differences between these two construction methods mentioned above, two different proofs are given.

Dans la littérature, deux méthodes de construction fondamentales ont été utilisées pour étudier les fibrés vectoriels sur une surface de Hirzebruch. Dʼune part, nous avons la méthode de Serre et les modifications élémentaires, décrivant dʼune manière canonique les fibrés de rang deux comme des extensions (Brînzănescu et Stoia, 1984 [4,5], Brînzănescu, 1996 [6], Brosius, 1983 [7], Friedman, 1998 [9]) et dʼautre part, nous avons la suite spectrale de Beilinson (Buchdahl, 1987 [8]). Moralement, la suite spectrale de Beilinson nous indique comment récupérer un fibré à partir de la cohomologie de ses tensorisations et de certains morphismes de faisceaux (les différentielles de la suite spectrale). Le but de cette Note est de montrer que lʼextension canonique dʼun fibré de rang deux peut être déduite de la suite spectrale de Beilinson dʼune tensorisation convenable, appellée la normalisation. Dans la dernière partie, nous donnons un critère cohomologique pour quʼun fibré vectoriel topologiquement trivial sur une surface de Hirzebruch soit trivial. Afin de souligner les relations et les différences entre les deux méthodes de construction mentionnées ci-dessus, deux démonstrations différentes sont présentées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.04.013

Marian Aprodu 1; Marius Marchitan 2

1 Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania
2 University “Ştefan cel Mare”, Str. Universităţii 13, 720229 Suceava, Romania
@article{CRMATH_2011__349_11-12_687_0,
     author = {Marian Aprodu and Marius Marchitan},
     title = {A {Note} on vector bundles on {Hirzebruch} surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {687--690},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.04.013},
     language = {en},
}
TY  - JOUR
AU  - Marian Aprodu
AU  - Marius Marchitan
TI  - A Note on vector bundles on Hirzebruch surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 687
EP  - 690
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.04.013
LA  - en
ID  - CRMATH_2011__349_11-12_687_0
ER  - 
%0 Journal Article
%A Marian Aprodu
%A Marius Marchitan
%T A Note on vector bundles on Hirzebruch surfaces
%J Comptes Rendus. Mathématique
%D 2011
%P 687-690
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.04.013
%G en
%F CRMATH_2011__349_11-12_687_0
Marian Aprodu; Marius Marchitan. A Note on vector bundles on Hirzebruch surfaces. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 687-690. doi : 10.1016/j.crma.2011.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.013/

[1] M. Aprodu; V. Brînzănescu Fibrés vectoriels de rang 2 sur les surfaces réglées, C. R. Acad. Sci. Paris, Ser. I, Volume 323 (1996) no. 6, pp. 627-630

[2] M. Aprodu; V. Brînzănescu Stable rank-2 vector bundles over ruled surfaces, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997) no. 3, pp. 295-300

[3] M. Aprodu; V. Brînzănescu Beilinson type spectral sequences on scrolls, Moduli Spaces and Vector Bundles, London Math. Soc. Lecture Note Ser., vol. 359, Cambridge Univ. Press, Cambridge, 2009, pp. 426-436

[4] V. Brînzănescu; M. Stoia Topologically trivial algebraic 2-vector bundles on ruled surfaces. I, Rev. Roumaine Math. Pures Appl., Volume 29 (1984) no. 8, pp. 661-673

[5] V. Brînzănescu; M. Stoia Topologically trivial algebraic 2-vector bundles on ruled surfaces. II, Bucharest, 1982 (Lecture Notes in Math.), Volume vol. 1056, Springer, Berlin (1984), pp. 34-46

[6] V. Brînzănescu Holomorphic Vector Bundles over Compact Complex Surfaces, Lecture Notes in Mathematics, vol. 1624, Springer-Verlag, Berlin, 1996

[7] J.E. Brosius Rank-2 vector bundles on a ruled surface. I, Math. Ann., Volume 265 (1983) no. 2, pp. 155-168

[8] N.P. Buchdahl Stable 2-bundles on Hirzebruch surfaces, Math. Z., Volume 194 (1987) no. 1, pp. 143-152

[9] R. Friedman Algebraic Surfaces and Holomorphic Vector Bundles, Universitext, Springer-Verlag, New York, 1998

[10] C. Okonek; M. Schneider; H. Spindler Vector Bundles on Complex Projective Spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980

[11] P. Pragacz; V. Srinivas; V. Pati Diagonal subschemes and vector bundles, Pure Appl. Math. Quart., Volume 4 (2008) no. 4, Part 1, pp. 1233-1278

Cited by Sources:

Comments - Policy