Comptes Rendus
Differential Geometry
On m-th root metrics with special curvature properties
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 691-693.

In this Note, we prove that every m-th root Finsler metric with isotropic Landsberg curvature reduces to a Landsberg metric. Then, we show that every m-th root metric with almost vanishing H-curvature has vanishing H-curvature.

Dans cette Note, nous montrons que toutes les métriques de Finsler racines m-ièmes ayant une courbure de Landsberg isotrope se réduisent à une métrique de Landsberg. Nous montrons ensuite que toutes les métriques de Finsler racines m-ièmes ayant une H-courbure presque nulle ont en fait une H-courbure nulle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.06.004

Akbar Tayebi 1; Behzad Najafi 2

1 Department of Mathematics, Qom University, Qom, Iran
2 Department of Mathematics, Shahed University, Tehran, Iran
@article{CRMATH_2011__349_11-12_691_0,
     author = {Akbar Tayebi and Behzad Najafi},
     title = {On \protect\emph{m}-th root metrics with special curvature properties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {691--693},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.004},
     language = {en},
}
TY  - JOUR
AU  - Akbar Tayebi
AU  - Behzad Najafi
TI  - On m-th root metrics with special curvature properties
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 691
EP  - 693
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.06.004
LA  - en
ID  - CRMATH_2011__349_11-12_691_0
ER  - 
%0 Journal Article
%A Akbar Tayebi
%A Behzad Najafi
%T On m-th root metrics with special curvature properties
%J Comptes Rendus. Mathématique
%D 2011
%P 691-693
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.06.004
%G en
%F CRMATH_2011__349_11-12_691_0
Akbar Tayebi; Behzad Najafi. On m-th root metrics with special curvature properties. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 691-693. doi : 10.1016/j.crma.2011.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.004/

[1] H. Akbar-Zadeh Sur les espaces de Finsler á courbures sectionnelles constantes, Bull. Acad. Roy. Belg. Cl. Sci. (5), Volume LXXXIV (1988), pp. 281-322

[2] V. Balan Numerical multilinear algebra of symmetric m-root structures. Spectral properties and applications, Symmetry Festival 2009, Budapest, Hungary (Symmetry: Culture and Science), Volume 21 (2010) no. 1–3, pp. 119-131

[3] V. Balan CMC and minimal surfaces in Berwald–Moor spaces, Hypercomplex Numbers in Geometry and Physics, Volume 3 (2006) no. 2(6), pp. 113-122

[4] V. Balan; N. Perminov Applications of resultants in the spectral m-root framework, Applied Sciences, Volume 12 (2010), pp. 20-29

[5] V. Balan; N. Brinzei Einstein equations for (h,v) – Berwald–Moor relativistic models, Balkan. J. Geom. Appl., Volume 11 (2006) no. 2, pp. 20-26

[6] V. Balan; N. Brinzei Berwald–Moor-type (h,v)-metric physical models, Hypercomplex Numbers in Geometry and Physics, Volume 2 (2005) no. 2(4), pp. 114-122

[7] B. Najafi; Z. Shen; A. Tayebi Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata, Volume 131 (2008), pp. 87-97

[8] A. Tayebi; B. Najafi On m-th root Finsler metrics, J. Geom. Phys., Volume 61 (2011) no. 8, pp. 1479-1484

[9] Y. Yu; Y. You On Einstein m-th root metrics, Differential Geometry and its Applications, Volume 28 (2010), pp. 290-294

Cited by Sources:

Comments - Policy