We first present the natural definitions of the horizontal differential, the divergence (as an adjoint operator) and a
Nous présentons d’abord les définitions naturelles de la différentielle horizontale, de la divergence (comme opérateur adjoint) et d’une forme
Révisé le :
Accepté le :
Publié le :
Behroz Bidabad 1, 2 ; Mir Ahmad Mirshafeazadeh 3

@article{CRMATH_2022__360_G11_1193_0, author = {Behroz Bidabad and Mir Ahmad Mirshafeazadeh}, title = {Harmonic vector fields and the {Hodge} {Laplacian} operator on {Finsler} geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {1193--1204}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.287}, language = {en}, }
TY - JOUR AU - Behroz Bidabad AU - Mir Ahmad Mirshafeazadeh TI - Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry JO - Comptes Rendus. Mathématique PY - 2022 SP - 1193 EP - 1204 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.287 LA - en ID - CRMATH_2022__360_G11_1193_0 ER -
Behroz Bidabad; Mir Ahmad Mirshafeazadeh. Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1193-1204. doi : 10.5802/crmath.287. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.287/
[1] Initiation to global Finslerian geometry, North-Holland Mathematical Library, 68, Elsevier, 2006, 250 pages | Zbl
[2] An Introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics, 200, Springer, 2000, 431 pages
[3] A Hodge decomposition theorem for Finsler spaces, C. R. Math. Acad. Sci. Paris, Volume 323 (1996) no. 1, pp. 51-56 | MR | Zbl
[4] Valeurs propres d’opérateurs différentiels du second ordre sur une variété de Finsler, Bull. Sci. Math., Volume 122 (1998) no. 5, pp. 399-408 | DOI | Zbl
[5] On Sobolev spaces and density theorems on Finsler manifolds, AUT J. Math. Comput., Volume 1 (2020) no. 1, pp. 37-45
[6] Vector fields and Ricci curvature, Bull. Am. Math. Soc., Volume 52 (1946), pp. 776-797 | DOI | MR | Zbl
[7] Analysis Now, Springer, 1994
[8] Variation problems and E-valued horizontal harmonic forms on Finsler manifolds, Publ. Math., Volume 82 (2013) no. 2, pp. 325-339 | MR | Zbl
[9] Harmonic vector fields on Landsberg manifolds, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 9, pp. 737-741 | DOI | MR | Zbl
[10] Harmonic vector fields on Finsler manifolds, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 1, pp. 101-106 | DOI | MR | Zbl
[11] Introduction to modern Finsler geometry, Higher Education Press, 2016, 393 pages | DOI
[12] On harmonic and Killing vector fields, Ann. Math., Volume 55 (1952), pp. 38-45 | DOI | MR | Zbl
[13] Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, 1, Marcel Dekker, 1970
[14] Horizontal Laplace operator in real Finsler vector bundles, Acta Math. Sci., Volume 28 (2008) no. 1, pp. 128-140 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique