[Théorie de Hodge p-adique pour les variétés ouvertes]
This is an announcement of results whose proofs will be published elsewhere: We establish forms of the
Cette Note annonce des résultats dont les démonstrations seront publiées ailleurs. Ils concernent des formes de la conjecture
Accepté le :
Publié le :
Go Yamashita 1
@article{CRMATH_2011__349_21-22_1127_0, author = {Go Yamashita}, title = {\protect\emph{p}-Adic {Hodge} theory for open varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {1127--1130}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.016}, language = {en}, }
Go Yamashita. p-Adic Hodge theory for open varieties. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1127-1130. doi : 10.1016/j.crma.2011.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.016/
[1] Représentations p-adiques et équations différentielles, Invent. Math., Volume 148 (2002), pp. 219-286
[2] Smoothness, semistability and alterations, Inst. Hautes Etudes Sci. Publ. Math., Volume 83 (1996), pp. 51-93
[3] On the De Rham cohomology of algebraic varieties, Inst. Hautes Etudes Sci. Publ. Math., Volume 45 (1975), pp. 5-99
[4] Algebraic de Rham cohomology, Manuscripta Math., Volume 7 (1972), pp. 125-140
[5] Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque, Volume 223 (1994), pp. 221-268
[6] Logarithmic structures of Fontaine–Illusie, Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore, 1989, pp. 191-224
[7] F-crystals on schemes with constant log structure, Special issue in honor of F. Oort, Comp. Math., Volume 97 (1995), pp. 187-225
[8] p-Adic étale cohomology and crystalline cohomology in the semistable reduction case, Invent. Math., Volume 137 (1999), pp. 233-411
[9] Poincaré duality for logarithmic crystalline cohomology, Compositio Math., Volume 118 (1999) no. 1, pp. 11-41
[10] Semi-stable conjecture of Fontaine–Jannsen: a survey, Astérisque, Volume 279 (2002), pp. 323-370
- A
-adic arithmetic inner product formula, Inventiones mathematicae, Volume 236 (2024) no. 1, p. 219 | DOI:10.1007/s00222-024-01243-7 - Logarithmic Riemann–Hilbert correspondences for rigid varieties, Journal of the American Mathematical Society, Volume 36 (2022) no. 2, p. 483 | DOI:10.1090/jams/1002
- Constructibilité générique et uniformité en ℓ, Tunisian Journal of Mathematics, Volume 4 (2022) no. 1, p. 159 | DOI:10.2140/tunis.2022.4.159
- On uniqueness ofp-adic period morphisms, II, Compositio Mathematica, Volume 156 (2020) no. 9, p. 1915 | DOI:10.1112/s0010437x20007344
- p-adic Hodge-theoretic properties of étale cohomology with mod pcoefficients, and the cohomology of Shimura varieties, Algebra Number Theory, Volume 9 (2015) no. 5, p. 1035 | DOI:10.2140/ant.2015.9.1035
Cité par 5 documents. Sources : Crossref
Commentaires - Politique