This is an announcement of results whose proofs will be published elsewhere: We establish forms of the conjecture of Fontaine–Jannsen for proper semistable pairs over a complete discrete valuation ring R of mixed characteristic with perfect residue field, and partially properly supported cohomology. We derive the conjecture for separated K-schemes of finite type, where K is the fraction field of R. The proof is based on the method of syntomic complexes and p-adic vanishing cycles. A new ingredient is the use of hollow log schemes à la Ogus to provide tubular neighborhoods of intersections of components of divisors with normal crossings.
Cette Note annonce des résultats dont les démonstrations seront publiées ailleurs. Ils concernent des formes de la conjecture de Fontaine–Jannsen pour les paires semistables propres sur un anneau de valuation discrète complet R de caractéristique mixte à corps résiduel parfait et des groupes de cohomologie partiellement à support propre. On en déduit la conjecture pour les K-schémas séparés de type fini, où K est le corps des fractions de R. La méthode de démonstration est celle des complexes syntomiques et des cycles évanescents p-adiques. Un nouvel ingrédient est lʼutilisation de log schémas creux à la Ogus, qui fournissent des voisinages tubulaires dʼintersections de composantes de diviseurs à croisements normaux.
Accepted:
Published online:
Go Yamashita 1
@article{CRMATH_2011__349_21-22_1127_0, author = {Go Yamashita}, title = {\protect\emph{p}-Adic {Hodge} theory for open varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {1127--1130}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.016}, language = {en}, }
Go Yamashita. p-Adic Hodge theory for open varieties. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1127-1130. doi : 10.1016/j.crma.2011.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.016/
[1] Représentations p-adiques et équations différentielles, Invent. Math., Volume 148 (2002), pp. 219-286
[2] Smoothness, semistability and alterations, Inst. Hautes Etudes Sci. Publ. Math., Volume 83 (1996), pp. 51-93
[3] On the De Rham cohomology of algebraic varieties, Inst. Hautes Etudes Sci. Publ. Math., Volume 45 (1975), pp. 5-99
[4] Algebraic de Rham cohomology, Manuscripta Math., Volume 7 (1972), pp. 125-140
[5] Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque, Volume 223 (1994), pp. 221-268
[6] Logarithmic structures of Fontaine–Illusie, Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore, 1989, pp. 191-224
[7] F-crystals on schemes with constant log structure, Special issue in honor of F. Oort, Comp. Math., Volume 97 (1995), pp. 187-225
[8] p-Adic étale cohomology and crystalline cohomology in the semistable reduction case, Invent. Math., Volume 137 (1999), pp. 233-411
[9] Poincaré duality for logarithmic crystalline cohomology, Compositio Math., Volume 118 (1999) no. 1, pp. 11-41
[10] Semi-stable conjecture of Fontaine–Jannsen: a survey, Astérisque, Volume 279 (2002), pp. 323-370
Cited by Sources:
Comments - Policy