Comptes Rendus
Harmonic Analysis/Dynamical Systems
On systems of dilated functions
[Sur les systèmes de fonctions dilatées]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1261-1263.

Pour toute fonction f(x)=Zae2iπx telle que ν1aν2Δ(ν)<, où Δ est la fonction de Erdös–Hooley, nous montrons que la série k=0ckf(kx) converge presque partout dès que la suite des coefficients vérifie

r(j=2r+12r+1cj2d(j)(logj)2)1/2<,
d(n) désignant la fonction des diviseurs de n. Ceci améliore considérablement un certain nombre de résultats partiels précédemment obtenus.

If f(x)=Zae2iπx satisfies ν1aν2Δ(ν)<, where Δ is the Erdös–Hooley function, we show that the series k=0ckf(kx) converges for almost every x, whenever the coefficient sequence verifies the condition

r(j=2r+12r+1cj2d(j)(logj)2)1/2<,
d being the divisor function. This strongly improves earlier related results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.11.003

Michel J.G. Weber 1

1 IRMA, 7, rue René-Descartes, 67084 Strasbourg cedex, France
@article{CRMATH_2011__349_23-24_1261_0,
     author = {Michel J.G. Weber},
     title = {On systems of dilated functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1261--1263},
     publisher = {Elsevier},
     volume = {349},
     number = {23-24},
     year = {2011},
     doi = {10.1016/j.crma.2011.11.003},
     language = {en},
}
TY  - JOUR
AU  - Michel J.G. Weber
TI  - On systems of dilated functions
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1261
EP  - 1263
VL  - 349
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2011.11.003
LA  - en
ID  - CRMATH_2011__349_23-24_1261_0
ER  - 
%0 Journal Article
%A Michel J.G. Weber
%T On systems of dilated functions
%J Comptes Rendus. Mathématique
%D 2011
%P 1261-1263
%V 349
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2011.11.003
%G en
%F CRMATH_2011__349_23-24_1261_0
Michel J.G. Weber. On systems of dilated functions. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1261-1263. doi : 10.1016/j.crma.2011.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.003/

[1] I. Berkes, On the convergence of ncnf(nx) and the Lip 1/2 class, Trans. Amer. Math. Soc. 349 (10) 4143–4158.

[2] I. Berkes; M. Weber On the convergence of ckf(nkx), Memoirs of the A.M.S., Volume 201 (2009) no. 943 (vi+72p)

[3] L. Carleson On convergence and growth of partial sums of Fourier series, Acta Math., Volume 116 (1966), pp. 135-157

[4] V.F. Gaposhkin On convergence and divergence systems, Mat. Zametki, Volume 4 (1968), pp. 253-260

[5] G.H. Hardy; E.M. Wright An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979

[6] C. Hooley A new technique and its application to the theory of numbers, Proc. London Math. Soc. (3), Volume 38 (1979), pp. 115-151

[7] M. Weber Dynamical Systems and Processes, IRMA Lectures in Mathematics and Theoretical Physics, vol. 14, European Mathematical Society Publishing House, 2009 (xiii+759p)

  • Zoltán Buczolich Almost everywhere convergence questions of series of translates of non-negative functions, Real Analysis Exchange, Volume 48 (2023) no. 1, pp. 49-76 | DOI:10.14321/realanalexch.48.1.1663223339 | Zbl:1538.28004
  • Michel J. G. Weber An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann zeta function, Journal of Number Theory, Volume 162 (2016), pp. 137-179 | DOI:10.1016/j.jnt.2015.10.002 | Zbl:1381.40004
  • Jeffrey C. Lagarias; Wen-Ching Winnie Li The Lerch zeta function. IV: Hecke operators, Research in the Mathematical Sciences, Volume 3 (2016), p. 39 (Id/No 33) | DOI:10.1186/s40687-016-0082-9 | Zbl:1411.11081
  • Christoph Aistleitner; István Berkes; Kristian Seip; Michel Weber Convergence of series of dilated functions and spectral norms of GCD matrices, Acta Arithmetica, Volume 168 (2015) no. 3, pp. 221-246 | DOI:10.4064/aa168-3-2 | Zbl:1339.42008
  • Michel J. G. Weber On convergence almost everywhere of series of dilated functions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 353 (2015) no. 10, pp. 883-886 | DOI:10.1016/j.crma.2015.07.010 | Zbl:1348.40003
  • István Berkes; Michel Weber On series ckf(kx) and Khinchin's conjecture, Israel Journal of Mathematics, Volume 201 (2014), pp. 593-609 | DOI:10.1007/s11856-014-0036-0 | Zbl:1319.40001

Cité par 6 documents. Sources : zbMATH

Commentaires - Politique