[Sur les systèmes de fonctions dilatées]
Pour toute fonction
If
Accepté le :
Publié le :
Michel J.G. Weber 1
@article{CRMATH_2011__349_23-24_1261_0, author = {Michel J.G. Weber}, title = {On systems of dilated functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1261--1263}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.003}, language = {en}, }
Michel J.G. Weber. On systems of dilated functions. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1261-1263. doi : 10.1016/j.crma.2011.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.003/
[1] I. Berkes, On the convergence of
[2] On the convergence of
[3] On convergence and growth of partial sums of Fourier series, Acta Math., Volume 116 (1966), pp. 135-157
[4] On convergence and divergence systems, Mat. Zametki, Volume 4 (1968), pp. 253-260
[5] An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979
[6] A new technique and its application to the theory of numbers, Proc. London Math. Soc. (3), Volume 38 (1979), pp. 115-151
[7] Dynamical Systems and Processes, IRMA Lectures in Mathematics and Theoretical Physics, vol. 14, European Mathematical Society Publishing House, 2009 (xiii+759p)
- Almost everywhere convergence questions of series of translates of non-negative functions, Real Analysis Exchange, Volume 48 (2023) no. 1, pp. 49-76 | DOI:10.14321/realanalexch.48.1.1663223339 | Zbl:1538.28004
- An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann zeta function, Journal of Number Theory, Volume 162 (2016), pp. 137-179 | DOI:10.1016/j.jnt.2015.10.002 | Zbl:1381.40004
- The Lerch zeta function. IV: Hecke operators, Research in the Mathematical Sciences, Volume 3 (2016), p. 39 (Id/No 33) | DOI:10.1186/s40687-016-0082-9 | Zbl:1411.11081
- Convergence of series of dilated functions and spectral norms of GCD matrices, Acta Arithmetica, Volume 168 (2015) no. 3, pp. 221-246 | DOI:10.4064/aa168-3-2 | Zbl:1339.42008
- On convergence almost everywhere of series of dilated functions, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 353 (2015) no. 10, pp. 883-886 | DOI:10.1016/j.crma.2015.07.010 | Zbl:1348.40003
- On series
and Khinchin's conjecture, Israel Journal of Mathematics, Volume 201 (2014), pp. 593-609 | DOI:10.1007/s11856-014-0036-0 | Zbl:1319.40001
Cité par 6 documents. Sources : zbMATH
Commentaires - Politique