Comptes Rendus
Probability Theory/Mathematical Physics
On resonances in disordered multi-particle systems
[Sur les résonances dans un système à plusieurs particules en milieu désordonné]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 81-85.

On établit une estimation de la probabilité de résonance entre deux états quantiques x=(x1,,xN) et y=(y1,,yN) dans Zd, d1, pour un système de N3 particules quantiques en milieu désordonné. Cette estimation généralise lʼanalogue de lʼestimation de Wegner pour N particules, analogue démontrée précédemment dans (Chulaevsky et Suhov (2008, 2009) [6,7]). Ce résultat permet dʼobtenir des estimations optimales de décroissance de fonctions propres pour les systèmes de N>2 particules dans les milieux désordonnés, déjà démontrées dans (Chulaevsky et Suhov (2008) [6]) pour N=2.

We assess the probability of resonances between sufficiently distant states x=(x1,,xN) and y=(y1,,yN) in the configuration space of an N-particle disordered quantum system on the lattice Zd, d1. This includes the cases where the transition xy “shuffles” the particles in x, like the transition (a,a,b)(a,b,b) in a 3-particle system. In presence of a random external potential V(,ω) such pairs of configurations (x,y) give rise to strongly coupled random local Hamiltonians, so that eigenvalue concentration bounds are difficult to obtain (cf. Aizenman and Warzel (2009) [2]; Chulaevsky and Suhov (2009) [8]). This results in eigenfunction decay bounds weaker than expected. We show that more optimal bounds obtained so far only for 2-particle systems (Chulaevsky and Suhov (2008) [6]) can be extended to any N>2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.12.003
Victor Chulaevsky 1

1 Département de mathématiques, université de Reims, moulin de la Housse, B.P. 1039, 51687 Reims cedex 2, France
@article{CRMATH_2012__350_1-2_81_0,
     author = {Victor Chulaevsky},
     title = {On resonances in disordered multi-particle systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {81--85},
     publisher = {Elsevier},
     volume = {350},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crma.2011.12.003},
     language = {en},
}
TY  - JOUR
AU  - Victor Chulaevsky
TI  - On resonances in disordered multi-particle systems
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 81
EP  - 85
VL  - 350
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2011.12.003
LA  - en
ID  - CRMATH_2012__350_1-2_81_0
ER  - 
%0 Journal Article
%A Victor Chulaevsky
%T On resonances in disordered multi-particle systems
%J Comptes Rendus. Mathématique
%D 2012
%P 81-85
%V 350
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2011.12.003
%G en
%F CRMATH_2012__350_1-2_81_0
Victor Chulaevsky. On resonances in disordered multi-particle systems. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 81-85. doi : 10.1016/j.crma.2011.12.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.003/

[1] M. Aizenman; S.A. Molchanov Localization at large disorder and at extreme energies: an elementary derivation, Comm. Math. Phys., Volume 157 (1993), pp. 245-278

[2] M. Aizenman; S. Warzel Localization bounds for multi-particle systems, Comm. Math. Phys., Volume 290 (2009), pp. 903-934

[3] P. Anderson Absence of diffusion in certain random lattices, Phys. Rev., Volume 109 (1958), pp. 1492-1505

[4] A. Boutet de Monvel; V. Chulaevsky; P. Stollmann; Y. Suhov Wegner-type bounds for a multi-particle continuous Anderson model with an alloy-type external potential, J. Stat. Phys., Volume 138 (2010), pp. 553-566

[5] V. Chulaevsky; Y. Suhov Anderson localisation for an interacting two-particle quantum system on Z, 2007 | arXiv

[6] V. Chulaevsky; Y. Suhov Wegner bounds for a two-particle tight binding model, Comm. Math. Phys., Volume 283 (2008), pp. 479-489

[7] V. Chulaevsky; Y. Suhov Eigenfunctions in a two-particle Anderson tight binding model, Comm. Math. Phys., Volume 289 (2009), pp. 701-723

[8] V. Chulaevsky; Y. Suhov Multi-particle Anderson localisation: induction on the number of particles, Math. Phys. Anal. Geom., Volume 12 (2009), pp. 117-139

[9] H. von Dreifus; A. Klein A new proof of localization in the Anderson tight binding model, Comm. Math. Phys., Volume 124 (1989), pp. 285-299

[10] J. Fröhlich; T. Spencer Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys., Volume 88 (1983), pp. 151-184

[11] J. Fröhlich; F. Martinelli; E. Scoppola; T. Spencer Constructive proof of localization in the Anderson tight binding model, Comm. Math. Phys., Volume 101 (1985), pp. 21-46

[12] M. Gaume, An extension of the multi-particle Wegner-type bound for weakly decoupled Hamiltonians, preprint, Univ. Paris 7, in preparation.

[13] I.Y. Goldsheid; S.A. Molchanov; L.A. Pastur A pure point spectrum of the one-dimensional Schrödinger operator, Funct. Anal. Appl., Volume 11 (1977), pp. 1-10

[14] W. Kirsch A Wegner estimate for multi-particle random Hamiltonians, Zh. Mat. Fiz. Anal. Geom., Volume 4 (2008), pp. 121-127

[15] H. Kunz; B. Souillard Sur le spectre des opérateurs aux différences finies aléatoires, Comm. Math. Phys., Volume 78 (1980), pp. 201-246

[16] P. Stollmann Caught by Disorder, Birkhäuser Inc., Boston, MA, 2001

[17] F. Wegner Bounds on the density of states in disordered systems, Z. Phys. B: Condensed Matter, Volume 44 (1981), pp. 9-15

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

On two-particle Anderson localization at low energies

Trésor Ekanga

C. R. Math (2011)


On localization for the Schrödinger operator with a Poisson random potential

François Germinet; Peter Hislop; Abel Klein

C. R. Math (2005)