In this Note we prove a stability result for two independent coefficients (each one depending on only one space variable and the potential also depending on the time variable) for a time-dependent Schrödinger operator in an unbounded strip with one observation on an unbounded subset of the boundary and the data of the solution at a fixed time on the whole domain.
Dans cette Note, on prouve un résultat de stabilité pour deux coefficients indépendants (chacun dʼeux dépendant dʼune seule variable dʼespace et le potentiel dépendant aussi de la variable temps) pour un opérateur de Schrödinger avec une observation sur une partie non bornée du bord et la donnée de la solution à un temps fixé sur tout le domaine.
Accepted:
Published online:
Laure Cardoulis 1, 2
@article{CRMATH_2012__350_19-20_891_0, author = {Laure Cardoulis}, title = {An inverse problem for a time-dependent {Schr\"odinger} operator in an unbounded strip}, journal = {Comptes Rendus. Math\'ematique}, pages = {891--896}, publisher = {Elsevier}, volume = {350}, number = {19-20}, year = {2012}, doi = {10.1016/j.crma.2012.10.006}, language = {en}, }
Laure Cardoulis. An inverse problem for a time-dependent Schrödinger operator in an unbounded strip. Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 891-896. doi : 10.1016/j.crma.2012.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.006/
[1] Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554
[2] Inverse problem for the Schrödinger operator in an unbounded strip, J. Inverse and Ill-Posed Problems, Volume 16 (2008) no. 2, pp. 127-146
[3] Identification of two independent coefficients with one observation for the Schrödinger operator in an unbounded strip, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 149-153
[4] Simultaneous identification of the diffusion coefficient and the potential for the Schrödinger operator with only one observation, Inverse Problems, Volume 26 (2010), p. 035012
[5] Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations, Applicable Analysis, Volume 90 (2011) no. 10, pp. 1499-1520
[6] Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM Control Optim. Calc. Var., Volume 11 (2005) no. 1, pp. 1-56
Cited by Sources:
Comments - Policy