It is well known that in a regular domain, the solutions of the Laplace equation with mixed boundary conditions can present a singular part. In this work, we prove a Carleman estimate for the two dimensional domain heat equation in presence of these singularities.
Il est bien connu que dans un ouvert régulier, les solutions du problème mêlé pour lʼéquation de Laplace présentent des singularités. Le but de ce travail est dʼétablir une inégalité de Carleman pour lʼéquation de la chaleur en dimension deux en présence de ces singularités.
Accepted:
Published online:
Tarik Ali Ziane 1; Hadjer Ouzzane 1; Ouahiba Zair 1
@article{CRMATH_2013__351_3-4_97_0, author = {Tarik Ali Ziane and Hadjer Ouzzane and Ouahiba Zair}, title = {A {Carleman} estimate for the two dimensional heat equation with mixed boundary conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {97--100}, publisher = {Elsevier}, volume = {351}, number = {3-4}, year = {2013}, doi = {10.1016/j.crma.2013.02.006}, language = {en}, }
TY - JOUR AU - Tarik Ali Ziane AU - Hadjer Ouzzane AU - Ouahiba Zair TI - A Carleman estimate for the two dimensional heat equation with mixed boundary conditions JO - Comptes Rendus. Mathématique PY - 2013 SP - 97 EP - 100 VL - 351 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2013.02.006 LA - en ID - CRMATH_2013__351_3-4_97_0 ER -
%0 Journal Article %A Tarik Ali Ziane %A Hadjer Ouzzane %A Ouahiba Zair %T A Carleman estimate for the two dimensional heat equation with mixed boundary conditions %J Comptes Rendus. Mathématique %D 2013 %P 97-100 %V 351 %N 3-4 %I Elsevier %R 10.1016/j.crma.2013.02.006 %G en %F CRMATH_2013__351_3-4_97_0
Tarik Ali Ziane; Hadjer Ouzzane; Ouahiba Zair. A Carleman estimate for the two dimensional heat equation with mixed boundary conditions. Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 97-100. doi : 10.1016/j.crma.2013.02.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.02.006/
[1] Carleman inequalities for the two-dimensional heat equation in singular domains, Math. Control Rel. Fields, Volume 2 (2012) no. 4, pp. 331-359
[2] A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 385-390
[3] Carleman estimates for the Zaremba boundary condition and stabilization of stabilization of waves, 2012 (pp. 1–37) | arXiv
[4] Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM Control Optim. Calc. Var., Volume 12 (2006) no. 3, pp. 442-465
[5] Logarithmic decay of hyperbolic equations with arbitrary small boundary damping, Commun. Part. Diff. Eq., Volume 34 (2009) no. 7–9, pp. 957-975
[6] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Seoul National University, Korea, 1996
[7] Contrôlabilité exacte des solutions de lʼéquation des ondes en présence de singularités, J. Math. Pures Appl., Volume 68 (1989) no. 2, pp. 215-259
[8] Regularization of mixed second-order elliptic problems, Israel J. Math., Volume 6 (1968), pp. 150-168
Cited by Sources:
Comments - Policy