Comptes Rendus
Partial Differential Equations
A mathematical model of mast cell response to acupuncture needling
Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 101-105.

We introduce a new model of mast cell response to acupuncture needling based on the Keller–Segel model for chemotaxis. The needle manipulation induces the release of a chemoattractant by the mast cells. We show, in a simplified case, that blow-up of the solution occurs in finite time for large initial data concentrated around the acupoint. In those conditions, blow-up is the result of aggregation of cells and could indicate the efficiency of the acupuncture manipulation of the needle at one acupoint.

Nous présentons un nouveau modèle de la réponse des mastocytes à la manipulation dʼune aiguille dʼacupuncture basé sur le modèle de chimiotaxie de type Keller–Segel. La manipulation de lʼaiguille induit la libération du chimioattractant par les mastocytes. Nous montrons, dans un système simplifié, que la solution devient singulière en un temps fini pour des conditions initiales suffisamment grandes et concentrées autour du point acupuncture. Dans ces conditions, lʼexplosion de la solution résulte de lʼagrégation des cellules et pourrait mesurer lʼefficacité de la manipulation de lʼaiguille sur le point dʼacupuncture.

Published online:
DOI: 10.1016/j.crma.2013.02.003

Yannick Deleuze 1, 2

1 Laboratoire Jacques-Louis-Lions, université Pierre-et-Marie-Curie (Paris-6), UMR 7598, 4, place Jussieu, 75252 Paris cedex 05, France
2 Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da-an District, Taipei 10617, Taiwan, ROC
     author = {Yannick Deleuze},
     title = {A mathematical model of mast cell response to acupuncture needling},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {101--105},
     publisher = {Elsevier},
     volume = {351},
     number = {3-4},
     year = {2013},
     doi = {10.1016/j.crma.2013.02.003},
     language = {en},
AU  - Yannick Deleuze
TI  - A mathematical model of mast cell response to acupuncture needling
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 101
EP  - 105
VL  - 351
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2013.02.003
LA  - en
ID  - CRMATH_2013__351_3-4_101_0
ER  - 
%0 Journal Article
%A Yannick Deleuze
%T A mathematical model of mast cell response to acupuncture needling
%J Comptes Rendus. Mathématique
%D 2013
%P 101-105
%V 351
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2013.02.003
%G en
%F CRMATH_2013__351_3-4_101_0
Yannick Deleuze. A mathematical model of mast cell response to acupuncture needling. Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 101-105. doi : 10.1016/j.crma.2013.02.003.

[1] A. Blanchet; J. Dolbeault; B. Perthame Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, Volume 44 (2006), pp. 1-33

[2] V. Calvez; L. Corrias The parabolic–parabolic Keller–Segel model in R2, Commun. Math. Sci., Volume 6 (2008), pp. 417-447

[3] X. Cheng Chinese Acupuncture and Moxibustion, Foreign Language Press, Beijing, 1987

[4] F. Hecht, New development in FreeFem++, J. Numer. Math. (2013), in press.

[5] S.-H. Hsiao; L.-J. Tsai A neurovascular transmission model for acupuncture-induced nitric oxide, J. Acupuncture Meridian Stud., Volume 1 (2008), pp. 42-50

[6] H. Hsiu; W.-C. Hsu; C.-L. Hsu; S.-M. Huang Assessing the effects of acupuncture by comparing needling the Hegu acupoint and needling nearby nonacupoints by spectral analysis of microcirculatory laser Doppler signals, Evid.-Based Complement. Alternat. Med., Volume 2011 (2011), p. 435928

[7] W. Jager; S. Luckhaus On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824

[8] E.F. Keller; L.A. Segel Model for chemotaxis, J. Theoret. Biol., Volume 30 (1971), pp. 225-234

[9] T.C. Kuo; Y.J. Chen; H.Y. Kuo; C.F. Chan Blood flow effect of acupuncture on the human meridian, Med. Acupuncture, Volume 22 (2010), pp. 33-40

[10] H.M. Langevin; D.L. Churchill; M.J. Cipolla Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture, FASEB J., Volume 15 (2001), pp. 2275-2282

[11] H.M. Langevin; D.L. Churchill; J. Wu; G.J. Badger; J.A. Yandow; J.R. Fox et al. Evidence of connective tissue involvement in acupuncture, FASEB J., Volume 16 (2002), pp. 872-874

[12] D. Metcalfe; D. Baram; Y. Mekori Mast cells, Physiol. Rev., Volume 77 (1997), pp. 1033-1079

[13] T. Nagai; T. Senba Global existence and blow-up of radial solutions to a parabolic–elliptic system of chemotaxis, Adv. Math. Sci. Appl., Volume 8 (1998), pp. 145-156

[14] G. Nilsson; M. Johnell; C.H. Hammer; H.L. Tiffany; K. Nilsson; D.D. Metcalfe et al. C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway, J. Immunol., Volume 157 (1996), pp. 1693-1698

[15] B. Perthame Transport Equations in Biology, Birkhäuser, 2007

[16] M. Thiriet Biology and Mechanics of Blood Flows: Part I: Biology, Springer, New York, 2008

[17] M. Urb; D.C. Sheppard The role of mast cells in the defence against pathogens, PLoS Pathog., Volume 8 (2012), p. e1002619

[18] X. Yu; G. Ding; H. Huang; J. Lin; W. Yao; R. Zhan Role of collagen fibers in acupuncture analgesia therapy on rats, Connect. Tissue Res., Volume 50 (2009), pp. 110-120

[19] D. Zhang; G. Ding; X. Shen; W. Yao; Z. Zhang; Y. Zhang et al. Role of mast cells in acupuncture effect: a pilot study, Explore (NY), Volume 4 (2008), pp. 170-177

Cited by Sources:

This work was partially supported by the ‘‘Fondation Sciences mathématiques de Paris”.

☆☆ Many thanks to Benoît Perthame for fruitful discussions about this work.

Comments - Policy