[Une variante avec poids des inégalités dʼinjection]
Dans cette Note, pour des fonctions vectorielles définies sur des domaines non bornés de
In this Note, for vector functions defined on unbounded domains of
Accepté le :
Publié le :
Stanislav Kračmar 1 ; Šárka Nečasová 2 ; Patrick Penel 3
@article{CRMATH_2013__351_17-18_663_0, author = {Stanislav Kra\v{c}mar and \v{S}\'arka Ne\v{c}asov\'a and Patrick Penel}, title = {A certain weighted variant of the embedding inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {663--668}, publisher = {Elsevier}, volume = {351}, number = {17-18}, year = {2013}, doi = {10.1016/j.crma.2013.07.008}, language = {en}, }
TY - JOUR AU - Stanislav Kračmar AU - Šárka Nečasová AU - Patrick Penel TI - A certain weighted variant of the embedding inequalities JO - Comptes Rendus. Mathématique PY - 2013 SP - 663 EP - 668 VL - 351 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2013.07.008 LA - en ID - CRMATH_2013__351_17-18_663_0 ER -
Stanislav Kračmar; Šárka Nečasová; Patrick Penel. A certain weighted variant of the embedding inequalities. Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 663-668. doi : 10.1016/j.crma.2013.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.008/
[1] Étude des equations stationnaires de Stokes et Navier–Stokes dans des domaines extérieurs, 1994 (PhD thesis)
[2] Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., Volume 44 (1994) no. 1, pp. 109-140
[3] An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Vol. I: Linearized Steady Problems, Vol. II: Nonlinear Steady Problems, Springer-Verlag, New York, Berlin, Heidelberg, 1998
[4] Continuous and compact imbeddings of weighted Sobolev spaces, II, Czech. Math. J., Volume 39 (1989) no. 1, pp. 78-94
[5] S. Kračmar, M. Krbec, Š. Nečasová, P. Penel, K. Schumacher, Very weak solutions to the rotating Stokes problem in weighted spaces, in preparation.
[6] S. Kračmar, Š. Nečasová, P. Penel, Very weak solutions to the rotating Navier–Stokes problem in weighted spaces, in preparation.
[7] Weighted Sobolev Spaces, John Wiley and Sons, Inc., New York, 1985 (translated from the Czech)
[8] Les méthodes directes en théorie des équations elliptiques, Masson et C, Paris, 1967
[9] Denseness of finite fields in the space
[10] Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000
Cité par Sources :
Commentaires - Politique