[Sous-groupes localement normaux des groupes localement compacts simples]
We announce various results concerning the structure of compactly generated simple locally compact groups. We introduce a local invariant, called the structure lattice, which consists of commensurability classes of compact subgroups with open normaliser, and show that its properties reflect the global structure of the ambient group.
On annonce divers résultats concernant la structure de groupes localement compacts, simples et compactement engendrés. Un invariant local de ces groupes, appelé treillis structurel, est introduit ; il consiste en des classes de commensurabilité de sous-groupes compacts à normalisateur ouvert. Les propriétés de ce treillis refètent la structure globale du groupe ambiant.
Accepté le :
Publié le :
Pierre-Emmanuel Caprace 1 ; Colin D. Reid 2 ; George A. Willis 2
@article{CRMATH_2013__351_17-18_657_0, author = {Pierre-Emmanuel Caprace and Colin D. Reid and George A. Willis}, title = {Locally normal subgroups of simple locally compact groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {657--661}, publisher = {Elsevier}, volume = {351}, number = {17-18}, year = {2013}, doi = {10.1016/j.crma.2013.09.010}, language = {en}, }
TY - JOUR AU - Pierre-Emmanuel Caprace AU - Colin D. Reid AU - George A. Willis TI - Locally normal subgroups of simple locally compact groups JO - Comptes Rendus. Mathématique PY - 2013 SP - 657 EP - 661 VL - 351 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2013.09.010 LA - en ID - CRMATH_2013__351_17-18_657_0 ER -
Pierre-Emmanuel Caprace; Colin D. Reid; George A. Willis. Locally normal subgroups of simple locally compact groups. Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 657-661. doi : 10.1016/j.crma.2013.09.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.010/
[1] Abstract commensurators of profinite groups, Trans. Amer. Math. Soc., Volume 363 (2011) no. 10, pp. 5381-5417
[2] Locally normal subgroups of totally disconnected groups. Part I: General theory (available at) | arXiv
[3] Cantor systems, piecewise translations and simple amenable groups, Ann. Math., Volume 178 (2013) no. 2, pp. 775-787
[4] On just infinite abstract and profinite groups (M. du Sautoy; D. Segal; A. Shalev, eds.), New Horizons in Pro-p Groups, Birkhäuser, 2000 (chapter 5)
- Commensurated subgroups in tree almost automorphism groups, Groups, Geometry, and Dynamics, Volume 13 (2019) no. 1, pp. 1-30 | DOI:10.4171/ggd/477 | Zbl:1496.20048
- Non-discrete simple locally compact groups, European congress of mathematics. Proceedings of the 7th ECM (7ECM) congress, Berlin, Germany, July 18–22, 2016, Zürich: European Mathematical Society (EMS), 2018, pp. 333-354 | DOI:10.4171/176-1/15 | Zbl:1403.22004
- Locally normal subgroups of totally disconnected groups. II: Compactly generated simple groups, Forum of Mathematics, Sigma, Volume 5 (2017), p. 89 (Id/No e12) | DOI:10.1017/fms.2017.8 | Zbl:1401.22003
- The scale function and lattices, Proceedings of the American Mathematical Society, Volume 145 (2017) no. 7, pp. 3185-3190 | DOI:10.1090/proc/13449 | Zbl:1360.22010
- Groups acting on trees with almost prescribed local action, Commentarii Mathematici Helvetici, Volume 91 (2016) no. 2, pp. 253-293 | DOI:10.4171/cmh/385 | Zbl:1387.20020
- Scale-multiplicative semigroups and geometry: automorphism groups of trees, Groups, Geometry, and Dynamics, Volume 10 (2016) no. 3, pp. 1051-1075 | DOI:10.4171/ggd/376 | Zbl:1368.22002
- Totally disconnected locally compact groups locally of finite rank, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 158 (2015) no. 3, pp. 505-530 | DOI:10.1017/s0305004115000122 | Zbl:1371.22009
- Automorphism groups of right-angled buildings: simplicity and local splittings., Fundamenta Mathematicae, Volume 224 (2014) no. 1, pp. 17-51 | DOI:10.4064/fm224-1-2 | Zbl:1296.20031
Cité par 8 documents. Sources : zbMATH
Commentaires - Politique