Comptes Rendus
Group theory
Locally normal subgroups of simple locally compact groups
[Sous-groupes localement normaux des groupes localement compacts simples]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 657-661.

We announce various results concerning the structure of compactly generated simple locally compact groups. We introduce a local invariant, called the structure lattice, which consists of commensurability classes of compact subgroups with open normaliser, and show that its properties reflect the global structure of the ambient group.

On annonce divers résultats concernant la structure de groupes localement compacts, simples et compactement engendrés. Un invariant local de ces groupes, appelé treillis structurel, est introduit ; il consiste en des classes de commensurabilité de sous-groupes compacts à normalisateur ouvert. Les propriétés de ce treillis refètent la structure globale du groupe ambiant.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.09.010

Pierre-Emmanuel Caprace 1 ; Colin D. Reid 2 ; George A. Willis 2

1 Université catholique de Louvain, IRMP, chemin du Cyclotron, 2, bte L7.01.02, B-1348 Louvain-la-Neuve, Belgium
2 Department of Mathematics, University of Newcastle, Callaghan, NSW 2308, Australia
@article{CRMATH_2013__351_17-18_657_0,
     author = {Pierre-Emmanuel Caprace and Colin D. Reid and George A. Willis},
     title = {Locally normal subgroups of simple locally compact groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {657--661},
     publisher = {Elsevier},
     volume = {351},
     number = {17-18},
     year = {2013},
     doi = {10.1016/j.crma.2013.09.010},
     language = {en},
}
TY  - JOUR
AU  - Pierre-Emmanuel Caprace
AU  - Colin D. Reid
AU  - George A. Willis
TI  - Locally normal subgroups of simple locally compact groups
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 657
EP  - 661
VL  - 351
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2013.09.010
LA  - en
ID  - CRMATH_2013__351_17-18_657_0
ER  - 
%0 Journal Article
%A Pierre-Emmanuel Caprace
%A Colin D. Reid
%A George A. Willis
%T Locally normal subgroups of simple locally compact groups
%J Comptes Rendus. Mathématique
%D 2013
%P 657-661
%V 351
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2013.09.010
%G en
%F CRMATH_2013__351_17-18_657_0
Pierre-Emmanuel Caprace; Colin D. Reid; George A. Willis. Locally normal subgroups of simple locally compact groups. Comptes Rendus. Mathématique, Volume 351 (2013) no. 17-18, pp. 657-661. doi : 10.1016/j.crma.2013.09.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.010/

[1] Y. Barnea; M. Ershov; T. Weigel Abstract commensurators of profinite groups, Trans. Amer. Math. Soc., Volume 363 (2011) no. 10, pp. 5381-5417

[2] P.-E. Caprace; C.D. Reid; G.A. Willis Locally normal subgroups of totally disconnected groups. Part I: General theory (available at) | arXiv

[3] K. Juschenko; N. Monod Cantor systems, piecewise translations and simple amenable groups, Ann. Math., Volume 178 (2013) no. 2, pp. 775-787

[4] J.S. Wilson On just infinite abstract and profinite groups (M. du Sautoy; D. Segal; A. Shalev, eds.), New Horizons in Pro-p Groups, Birkhäuser, 2000 (chapter 5)

  • Adrien Le Boudec; Phillip Wesolek Commensurated subgroups in tree almost automorphism groups, Groups, Geometry, and Dynamics, Volume 13 (2019) no. 1, pp. 1-30 | DOI:10.4171/ggd/477 | Zbl:1496.20048
  • Pierre-Emmanuel Caprace Non-discrete simple locally compact groups, European congress of mathematics. Proceedings of the 7th ECM (7ECM) congress, Berlin, Germany, July 18–22, 2016, Zürich: European Mathematical Society (EMS), 2018, pp. 333-354 | DOI:10.4171/176-1/15 | Zbl:1403.22004
  • Pierre-Emmanuel Caprace; Colin D. Reid; George A. Willis Locally normal subgroups of totally disconnected groups. II: Compactly generated simple groups, Forum of Mathematics, Sigma, Volume 5 (2017), p. 89 (Id/No e12) | DOI:10.1017/fms.2017.8 | Zbl:1401.22003
  • G. A. Willis The scale function and lattices, Proceedings of the American Mathematical Society, Volume 145 (2017) no. 7, pp. 3185-3190 | DOI:10.1090/proc/13449 | Zbl:1360.22010
  • Adrien Le Boudec Groups acting on trees with almost prescribed local action, Commentarii Mathematici Helvetici, Volume 91 (2016) no. 2, pp. 253-293 | DOI:10.4171/cmh/385 | Zbl:1387.20020
  • Udo Baumgartner; Jacqui Ramagge; George A. Willis Scale-multiplicative semigroups and geometry: automorphism groups of trees, Groups, Geometry, and Dynamics, Volume 10 (2016) no. 3, pp. 1051-1075 | DOI:10.4171/ggd/376 | Zbl:1368.22002
  • Phillip Wesolek Totally disconnected locally compact groups locally of finite rank, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 158 (2015) no. 3, pp. 505-530 | DOI:10.1017/s0305004115000122 | Zbl:1371.22009
  • Pierre-Emmanuel Caprace Automorphism groups of right-angled buildings: simplicity and local splittings., Fundamenta Mathematicae, Volume 224 (2014) no. 1, pp. 17-51 | DOI:10.4064/fm224-1-2 | Zbl:1296.20031

Cité par 8 documents. Sources : zbMATH

Commentaires - Politique