We prove that a smooth surface in whose 4-secant lines do not sweep out a hypersurface of either lies on a pencil of cubic hypersurfaces, or else is linked to a Veronese surface by the complete intersection of a cubic and a quartic hypersurface.
Nous montrons quʼune surface lisse dans dont les droites quadrisécantes ne couvrent pas une hypersurface de est, soit contenue dans un pinceau de cubiques, soit liée à une surface de Veronese via lʼintersection complète dʼune cubique et dʼune quartique.
Accepted:
Published online:
José Carlos Sierra 1
@article{CRMATH_2013__351_15-16_623_0, author = {Jos\'e Carlos Sierra}, title = {Surfaces in $ {\mathbb{P}}^{4}$ whose 4-secant lines do not sweep out a hypersurface}, journal = {Comptes Rendus. Math\'ematique}, pages = {623--625}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.09.016}, language = {en}, }
José Carlos Sierra. Surfaces in $ {\mathbb{P}}^{4}$ whose 4-secant lines do not sweep out a hypersurface. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 623-625. doi : 10.1016/j.crma.2013.09.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.016/
[1] On surfaces in projective 4-space, 1987 (Thesis, Oslo)
[2] The smooth surfaces in without apparent triple points, Duke Math. J., Volume 57 (1988), pp. 423-430
[3] Inner projections of algebraic surfaces: a finiteness result, J. Reine Angew. Math., Volume 460 (1995), pp. 1-13
[4] Surfaces in with no quadrisecant lines, Beitr. Algebra Geom., Volume 39 (1998), pp. 31-36
[5] On skew surfaces, otherwise scrolls, Philos. Trans. R. Soc. Lond., Volume 153 (1863), pp. 453-483
[6] Threefolds in with one apparent quadruple point, Commun. Algebra, Volume 31 (2003), pp. 1927-1947
[7] Genre des courbes de lʼespace projectif, Univ. Tromsø, Tromsø, 1977 (Algebraic Geometry, Proc. Sympos.), Springer, Berlin (1978), pp. 31-59
[8] Embedded projective varieties of small invariants, III, LʼAquila, 1988 (Lect. Notes Math.), Volume vol. 1417, Springer, Berlin (1990), pp. 138-154
[9] Multiple-point formulas. I. Iteration, Acta Math., Volume 147 (1981), pp. 13-49
[10] Smooth threefolds in without apparent triple or quadruple points and a quadruple-point formula, Math. Ann., Volume 320 (2001), pp. 649-664
[11] On the existence of scrolls in , Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. (8), Volume 69 (1980), pp. 223-227
[12] Validité de certaines formules de géométrie énumérative, C. R. Acad. Sci. Paris, Sér. A, Volume 289 (1979), pp. 755-758
[13] Formules pour les multisécantes des surfaces, C. R. Acad. Sci. Paris, Sér. I, Volume 292 (1981), pp. 797-800
[14] Quelques formules multisécantes pour les surfaces, Sitges, 1987 (Enumerative Geometry), Springer, Berlin (1990), pp. 151-188
[15] On quadrisecant lines of threefolds in , Le Matematiche, Volume 55 (2000), pp. 469-481 Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001)
[16] Flächen vom Grad 8 im , Math. Z., Volume 191 (1986), pp. 207-223
[17] On projective varieties of codimension 2, Invent. Math., Volume 73 (1983), pp. 333-336
[18] The ()-secant lemma, Invent. Math., Volume 106 (1991), pp. 65-71
[19] Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e aʼ suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, Volume 15 (1901), pp. 33-51
Cited by Sources:
☆ Research supported by the “Ramón y Cajal” contract RYC-2009-04999 of MICINN, the project MTM2012-32670 and the ICMAT “Severo Ochoa” project SEV-2011-0087 of MINECO.
Comments - Policy