Based on the entropy formula for the Gauss curvature flow introduced by Bennett Chow, we define an entropy functional that is monotone along the unnormalized flow and whose critical point is a shrinking self-similar solution.
À partir de la formule dʼentropie introduite par Bennett Chow pour le flot de la courbure de Gauss, nous définissons une entropie qui est monotone le long du flot non normalisé, et dont le point critique est une solution auto-similaire contractante.
Accepted:
Published online:
Hongxin Guo 1; Robert Philipowski 2; Anton Thalmaier 2
@article{CRMATH_2013__351_21-22_833_0, author = {Hongxin Guo and Robert Philipowski and Anton Thalmaier}, title = {A note on {Chow's} entropy functional for the {Gauss} curvature flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {833--835}, publisher = {Elsevier}, volume = {351}, number = {21-22}, year = {2013}, doi = {10.1016/j.crma.2013.10.003}, language = {en}, }
TY - JOUR AU - Hongxin Guo AU - Robert Philipowski AU - Anton Thalmaier TI - A note on Chowʼs entropy functional for the Gauss curvature flow JO - Comptes Rendus. Mathématique PY - 2013 SP - 833 EP - 835 VL - 351 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2013.10.003 LA - en ID - CRMATH_2013__351_21-22_833_0 ER -
Hongxin Guo; Robert Philipowski; Anton Thalmaier. A note on Chowʼs entropy functional for the Gauss curvature flow. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 833-835. doi : 10.1016/j.crma.2013.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.003/
[1] On Harnackʼs inequality and entropy for the Gaussian curvature flow, Commun. Pure Appl. Math., Volume 4 (1991) no. 4, pp. 469-483
[2] Entropy and a convergence theorem for Gauss curvature flow in high dimension | arXiv
[3] An entropy formula relating Hamiltonʼs surface entropy and Perelmanʼs entropy, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 3–4, pp. 115-118
[4] The Ricci flow on surfaces, Santa Cruz, CA, 1986 (Contemp. Math.), Volume vol. 71 (1988), pp. 237-262
[5] Remarks on the entropy and Harnack estimates for the Gauss curvature flow, Commun. Anal. Geom., Volume 2 (1994) no. 1, pp. 155-165
[6] The entropy formula for the Ricci flow and its geometric applications | arXiv
Cited by Sources:
Comments - Policy