In this Note, we study the existence of low- or high-energy solutions for a class of elliptic problems containing a nonlinear term that oscillates either near the origin or at infinity. We point out the competition effect between the oscillatory nonlinearity, a polynomial growth term, and the values of a real parameter. The proofs combine related variational methods.
Dans cette Note, nous étudions lʼexistence de solutions à basse ou à haute énergie pour une classe de problèmes elliptiques contenant un terme non linéaire oscillatoire autour de lʼorigine ou à lʼinfini. Nous mettons en évidence lʼeffet de compétition entre la non-linéarité oscillatoire, le terme à croissance polynomiale et les valeurs dʼun paramètre réel. Les preuves combinent des méthodes topologiques et variationnelles.
Accepted:
Published online:
Giovanni Molica Bisci 1; Vicenţiu Rădulescu 2, 3; Raffaella Servadei 4
@article{CRMATH_2014__352_2_117_0, author = {Giovanni Molica Bisci and Vicen\c{t}iu R\u{a}dulescu and Raffaella Servadei}, title = {Low- and high-energy solutions of nonlinear elliptic oscillatory problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {117--122}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.11.015}, language = {en}, }
TY - JOUR AU - Giovanni Molica Bisci AU - Vicenţiu Rădulescu AU - Raffaella Servadei TI - Low- and high-energy solutions of nonlinear elliptic oscillatory problems JO - Comptes Rendus. Mathématique PY - 2014 SP - 117 EP - 122 VL - 352 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2013.11.015 LA - en ID - CRMATH_2014__352_2_117_0 ER -
%0 Journal Article %A Giovanni Molica Bisci %A Vicenţiu Rădulescu %A Raffaella Servadei %T Low- and high-energy solutions of nonlinear elliptic oscillatory problems %J Comptes Rendus. Mathématique %D 2014 %P 117-122 %V 352 %N 2 %I Elsevier %R 10.1016/j.crma.2013.11.015 %G en %F CRMATH_2014__352_2_117_0
Giovanni Molica Bisci; Vicenţiu Rădulescu; Raffaella Servadei. Low- and high-energy solutions of nonlinear elliptic oscillatory problems. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 117-122. doi : 10.1016/j.crma.2013.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.015/
[1] Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994) no. 2, pp. 519-543
[2] Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2013
[3] Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5703-5743
[4] G. Molica Bisci, V. Rădulescu, R. Servadei, Competition phenomena for elliptic equations involving a general operator in divergence form, in preparation.
[5] On weak solutions for p-Laplacian equations with weights, Atti Accad. Naz. Lincei, Volume 18 (2007), pp. 257-267
[6] Existence, non-existence and regularity of radial ground states for p-Laplacian equations with singular weights, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 505-537
Cited by Sources:
Comments - Policy