Comptes Rendus
Differential geometry
The GBC mass for asymptotically hyperbolic manifolds
Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 147-151.

By using the Gauss–Bonnet curvature, we introduce a higher-order mass, the Gauss–Bonnet–Chern mass, for asymptotically hyperbolic manifolds and show that it is a geometric invariant. Moreover, we prove a positive mass theorem for this new mass for asymptotically hyperbolic graphs. Then, we prove the weighted Alexandrov–Fenchel inequalities in the hyperbolic space Hn for any horospherical convex hypersurface Σ. As an application, we obtain an optimal Penrose-type inequality for this new mass for asymptotically hyperbolic graphs with a horizon type boundary Σ, provided that a dominant energy condition L˜k0 holds.

En utilisant la courbure de Gauss–Bonnet, on introduit une nouvelle masse dʼordre supérieur – la masse de Gauss–Bonnet–Chern –, sur des variétés asymptotiquement hyperboliques. On montre quʼil sʼagit dʼun invariant géométrique. On démontre également le théorème de masse positive sur des graphes sur lʼespace hyperbolique Hn et des inégalités dʼAlexandrov–Fenchel à poids dans Hn pour toute hypersurface convexe de type horosphérique. Ainsi, on obtient une inégalité de type Penrose optimale pour cette masse sur toute variété asymptotiquement hyperbolique qui est graphe sur Hn avec un horizon au bord, à condition que la condition dʼénergie dominante L˜k0 soit satisfaite.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.11.019

Yuxin Ge 1; Guofang Wang 2; Jie Wu 2, 3

1 Laboratoire dʼanalyse et de mathématiques appliquées, CNRS UMR 8050, Département de mathématiques, Université Paris-Est–Créteil–Val-de-Marne, 61, avenue du Général-de-Gaulle, 94010 Créteil cedex, France
2 Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Eckerstr. 1, 79104 Freiburg, Germany
3 School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, PR China
@article{CRMATH_2014__352_2_147_0,
     author = {Yuxin Ge and Guofang Wang and Jie Wu},
     title = {The {GBC} mass for asymptotically hyperbolic manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {147--151},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.11.019},
     language = {en},
}
TY  - JOUR
AU  - Yuxin Ge
AU  - Guofang Wang
AU  - Jie Wu
TI  - The GBC mass for asymptotically hyperbolic manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 147
EP  - 151
VL  - 352
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2013.11.019
LA  - en
ID  - CRMATH_2014__352_2_147_0
ER  - 
%0 Journal Article
%A Yuxin Ge
%A Guofang Wang
%A Jie Wu
%T The GBC mass for asymptotically hyperbolic manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 147-151
%V 352
%N 2
%I Elsevier
%R 10.1016/j.crma.2013.11.019
%G en
%F CRMATH_2014__352_2_147_0
Yuxin Ge; Guofang Wang; Jie Wu. The GBC mass for asymptotically hyperbolic manifolds. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 147-151. doi : 10.1016/j.crma.2013.11.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.11.019/

[1] H.L. Bray Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differ. Geom., Volume 59 (2001), pp. 177-267

[2] H.L. Bray; D.A. Lee On the Riemannian Penrose inequality in dimensions less than eight, Duke Math. J., Volume 148 (2009), pp. 81-106

[3] P. Chruściel; M. Herzlich The mass of asymptotically hyperbolic Riemannian manifolds, Pac. J. Math., Volume 212 (2003), pp. 231-264

[4] M. Dahl; R. Gicquaud; A. Sakovich Penrose type inequalities for asymptotically hyperbolic graphs, Ann. Inst. Henri Poincaré, Volume 14 (2013) no. 5, pp. 1135-1168

[5] L.L. de Lima; F. Girão An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality | arXiv

[6] Y. Ge; G. Wang; J. Wu A new mass for asymptotically flat manifolds | arXiv

[7] Y. Ge; G. Wang; J. Wu The Gauss–Bonnet–Chern mass of conformally flat manifolds (to appear in Int. Math. Res. Not) | arXiv

[8] Y. Ge, G. Wang, J. Wu, The GBC mass for asymptotically hyperbolic manifolds, preprint.

[9] M. Herzlich, Eur. Math. Soc., Zurich (2005), pp. 103-121

[10] L.-H. Huang; D. Wu The equality case of the Penrose inequality for asymptotically flat graphs | arXiv

[11] G. Huisken; T. Ilmanen The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom., Volume 59 (2001), pp. 353-437

[12] M.-K.G. Lam The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions | arXiv

[13] D. Lovelock The Einstein tensor and its generalizations, J. Math. Phys., Volume 12 (1971), pp. 498-501

[14] B. Michel Geometric invariance of mass-like asymptotic invariants, J. Math. Phys., Volume 52 (2011) no. 5, p. 052504

[15] R. Schoen; S.T. Yau On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., Volume 65 (1979), pp. 45-76

[16] X. Wang Mass for asymptotically hyperbolic manifolds, J. Differ. Geom., Volume 57 (2001), pp. 273-299

[17] E. Witten A new proof of the positive energy theorem, Commun. Math. Phys., Volume 80 (1981), pp. 381-402

[18] W. Zhang Lectures on Chern–Weil Theory and Witten Deformations, Nankai Tracts in Mathematics, vol. 4, World Scientific Publishing Co., Inc., River Edge, NJ, 2001

[19] X. Zhang A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I, Commun. Math. Phys., Volume 249 (2004), pp. 529-548

Cited by Sources:

This project is partly supported by SFB/TR71 “Geometric partial differential equations” of DFG.

Comments - Policy