Comptes Rendus
Differential geometry
The hypoelliptic Laplacian, analytic torsion and Cheeger–Müller Theorem
Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 153-156.

The purpose of this Note is to prove a formula relating the hypoelliptic Ray–Singer metric and the Milnor metric on the determinant of the cohomology of a compact Riemannian manifold by a Witten-like deformation of the hypoelliptic Laplacian in de Rham theory.

Lʼobjet de cette Note est de démontrer une formule reliant les métriques de Ray–Singer hypoelliptique et de Milnor sur le déterminant de la cohomologie dʼune variété riemannienne compacte par une déformation à la Witten du laplacien hypoelliptique en théorie de de Rham.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.12.012

Shu Shen 1

1 Département de mathématique, Université Paris-Sud, bâtiment 425, 91405 Orsay cedex, France
@article{CRMATH_2014__352_2_153_0,
     author = {Shu Shen},
     title = {The hypoelliptic {Laplacian,} analytic torsion and {Cheeger{\textendash}M\"uller} {Theorem}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {153--156},
     publisher = {Elsevier},
     volume = {352},
     number = {2},
     year = {2014},
     doi = {10.1016/j.crma.2013.12.012},
     language = {en},
}
TY  - JOUR
AU  - Shu Shen
TI  - The hypoelliptic Laplacian, analytic torsion and Cheeger–Müller Theorem
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 153
EP  - 156
VL  - 352
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2013.12.012
LA  - en
ID  - CRMATH_2014__352_2_153_0
ER  - 
%0 Journal Article
%A Shu Shen
%T The hypoelliptic Laplacian, analytic torsion and Cheeger–Müller Theorem
%J Comptes Rendus. Mathématique
%D 2014
%P 153-156
%V 352
%N 2
%I Elsevier
%R 10.1016/j.crma.2013.12.012
%G en
%F CRMATH_2014__352_2_153_0
Shu Shen. The hypoelliptic Laplacian, analytic torsion and Cheeger–Müller Theorem. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 153-156. doi : 10.1016/j.crma.2013.12.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.012/

[1] J.-M. Bismut The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476

[2] J.-M. Bismut; G. Lebeau The Hypoelliptic Laplacian and Ray–Singer Metrics, Annals of Mathematics Studies, vol. 167, Princeton University Press, Princeton, NJ, 2008

[3] J.-M. Bismut; W. Zhang An extension of a theorem by Cheeger and Müller, Astérisque, Volume 205 (1992), p. 235

[4] J.-M. Bismut; W. Zhang Milnor and Ray–Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., Volume 4 (1994) no. 2, pp. 136-212

[5] J. Cheeger Analytic torsion and the heat equation, Ann. Math. (2), Volume 109 (1979) no. 2, pp. 259-322

[6] L. Hörmander Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171

[7] V. Mathai; D. Quillen Superconnections, Thom classes, and equivariant differential forms, Topology, Volume 25 (1986) no. 1, pp. 85-110

[8] W. Müller Analytic torsion and R-torsion of Riemannian manifolds, Adv. Math., Volume 28 (1978) no. 3, pp. 233-305

[9] D.B. Ray; I.M. Singer R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210

[10] S. Shen, Laplacien hypoelliptique, torsion analytique et théorème de Cheeger–Müller, 2013, in press.

[11] E. Witten Supersymmetry and Morse theory, J. Differ. Geom., Volume 17 (1982) no. 4, pp. 661-692

Cited by Sources:

Comments - Policy