The purpose of this Note is to prove a formula relating the hypoelliptic Ray–Singer metric and the Milnor metric on the determinant of the cohomology of a compact Riemannian manifold by a Witten-like deformation of the hypoelliptic Laplacian in de Rham theory.
Lʼobjet de cette Note est de démontrer une formule reliant les métriques de Ray–Singer hypoelliptique et de Milnor sur le déterminant de la cohomologie dʼune variété riemannienne compacte par une déformation à la Witten du laplacien hypoelliptique en théorie de de Rham.
Accepted:
Published online:
Shu Shen 1
@article{CRMATH_2014__352_2_153_0, author = {Shu Shen}, title = {The hypoelliptic {Laplacian,} analytic torsion and {Cheeger{\textendash}M\"uller} {Theorem}}, journal = {Comptes Rendus. Math\'ematique}, pages = {153--156}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.012}, language = {en}, }
Shu Shen. The hypoelliptic Laplacian, analytic torsion and Cheeger–Müller Theorem. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 153-156. doi : 10.1016/j.crma.2013.12.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.012/
[1] The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476
[2] The Hypoelliptic Laplacian and Ray–Singer Metrics, Annals of Mathematics Studies, vol. 167, Princeton University Press, Princeton, NJ, 2008
[3] An extension of a theorem by Cheeger and Müller, Astérisque, Volume 205 (1992), p. 235
[4] Milnor and Ray–Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., Volume 4 (1994) no. 2, pp. 136-212
[5] Analytic torsion and the heat equation, Ann. Math. (2), Volume 109 (1979) no. 2, pp. 259-322
[6] Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171
[7] Superconnections, Thom classes, and equivariant differential forms, Topology, Volume 25 (1986) no. 1, pp. 85-110
[8] Analytic torsion and R-torsion of Riemannian manifolds, Adv. Math., Volume 28 (1978) no. 3, pp. 233-305
[9] R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210
[10] S. Shen, Laplacien hypoelliptique, torsion analytique et théorème de Cheeger–Müller, 2013, in press.
[11] Supersymmetry and Morse theory, J. Differ. Geom., Volume 17 (1982) no. 4, pp. 661-692
Cited by Sources:
Comments - Policy