We present a method to generate a non-affine transfinite map from a given reference domain to a family of deformed domains. The map is a generalization of the Gordon–Hall transfinite interpolation approach. It is defined globally over the reference domain. Once we have computed some functions over the reference domain, the map can be generated by knowing the parametric expressions of the boundaries of the deformed domain. Being able to define a suitable map from a reference domain to a desired deformation is useful for the management of parameterized geometries.
Nous présentons une méthode pour générer une transformation paramétrisée d'une géométrie de référence vers une famille de géométries déformées. La transformation est une généralisation de l'approche d'interpolation transfinie de Gordon–Hall et est définie globalement sur le domaine de référence. Une fois qu'on a calculé certaines fonctions sur le domaine de référence, la transformation peut être générée à partir des paramétrisations des bords du domaine déformé. Il est utile pour le maniement des géométries déformées d'être capable de définir une transformation appropriée d'un domaine de référence vers une déformation souhaitée.
Accepted:
Published online:
Christoph Jäggli 1; Laura Iapichino 2; Gianluigi Rozza 3
@article{CRMATH_2014__352_3_263_0, author = {Christoph J\"aggli and Laura Iapichino and Gianluigi Rozza}, title = {An improvement on geometrical parameterizations by transfinite maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {263--268}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2013.12.017}, language = {en}, }
TY - JOUR AU - Christoph Jäggli AU - Laura Iapichino AU - Gianluigi Rozza TI - An improvement on geometrical parameterizations by transfinite maps JO - Comptes Rendus. Mathématique PY - 2014 SP - 263 EP - 268 VL - 352 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2013.12.017 LA - en ID - CRMATH_2014__352_3_263_0 ER -
Christoph Jäggli; Laura Iapichino; Gianluigi Rozza. An improvement on geometrical parameterizations by transfinite maps. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 263-268. doi : 10.1016/j.crma.2013.12.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.017/
[1] An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 9, pp. 667-672
[2] Transfinite element method: blending-function interpolation over arbitrary curved element domains, Numer. Math., Volume 21 (1973), pp. 109-129
[3] Reduced basis methods for the solution of parametrized PDEs in repetitive and complex networks with application to CFD, École Polytechnique Fédérale de Lausanne, 2012 http://infoscience.epfl.ch (PhD thesis, No. 5529)
[4] A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks, Comput. Methods Appl. Mech. Eng., Volume 221–222 (2012), pp. 63-82
[5] A reduced basis element method for the steady Stokes problem, Math. Model. Numer. Anal., Volume 40 (2006) no. 3, pp. 529-552
[6] Global maps on general domains, Math. Models Methods Appl. Sci. (M3AS), Volume 19 (2009) no. 5, pp. 803-832
[7] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., Volume 15 (2008), pp. 229-275
Cited by Sources:
Comments - Policy