Comptes Rendus
Algebraic geometry
Nefness: Generalization to the lc case
Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 333-337.

This note is devoted to a proof of the b-nefness of the moduli part in the canonical bundle formula for an lc-trivial fibration that is lc and not klt over the generic point of the base. This result is proved in [3, §8] and [4] by using the theory of variation of mixed Hodge structure. Here we present a proof that makes use only of the theory of variation of Hodge structure and follows Ambro's proof of [2, Theorem 0.2].

Cette note se consacre à démontrer que la partie modulaire de la formule du fibré canonique pour une fibration qui est lc-triviale et non klt-triviale est b-semiample. Ce résultat est démontré dans [3, §8] et dans [4] en utilisant des resultats très profonds concernant les variations de structure de Hodge mixte. On présente ici une preuve qui est plus élémentaire et qui suit celle de [2, théorème 0.2].

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.01.011
@article{CRMATH_2014__352_4_333_0,
     author = {Enrica Floris},
     title = {Nefness: {Generalization} to the lc case},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {333--337},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.01.011},
     language = {en},
}
TY  - JOUR
AU  - Enrica Floris
TI  - Nefness: Generalization to the lc case
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 333
EP  - 337
VL  - 352
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2014.01.011
LA  - en
ID  - CRMATH_2014__352_4_333_0
ER  - 
%0 Journal Article
%A Enrica Floris
%T Nefness: Generalization to the lc case
%J Comptes Rendus. Mathématique
%D 2014
%P 333-337
%V 352
%N 4
%I Elsevier
%R 10.1016/j.crma.2014.01.011
%G en
%F CRMATH_2014__352_4_333_0
Enrica Floris. Nefness: Generalization to the lc case. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 333-337. doi : 10.1016/j.crma.2014.01.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.011/

[1] F. Ambro The Adjunction Conjecture and its applications, The Johns Hopkins University, 1999 (PhD thesis preprint) | arXiv

[2] F. Ambro Shokurov's boundary property, J. Differential Geom., Volume 67 (2004), pp. 229-255

[3] A. Corti Flips for 3-Folds and 4-Folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, UK, 2007

[4] O. Fujino Higher direct images of log canonical divisors, J. Differential Geom., Volume 66 (2004) no. 3, pp. 453-479

[5] O. Fujino; Y. Gongyo On the moduli b-divisors of lc-trivial fibrations | arXiv

[6] Y. Kawamata Subadjunction of log canonical divisors, II, Amer. J. Math., Volume 120 (1998), pp. 893-899

[7] Y. Kawamata Characterization of Abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276

[8] Y. Kawamata Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., Volume 66 (1982), pp. 57-71

[9] J. Kollár Higher direct images of dualizing sheaves II, Ann. of Math. (2), Volume 124 (1986) no. 1, pp. 171-202

[10] E. Viehweg Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math., vol. 1, 1983, pp. 329-353

Cited by Sources:

Comments - Policy