The conjecture on spherical classes states that the Hopf invariant one and the Kervaire invariant one classes are the only elements in belonging to the image of the Hurewicz homomorphism. The Lannes–Zarati homomorphism is a map that corresponds to an associated graded (with a certain filtration) of the Hurewicz map. The algebraic version of the conjecture predicts that the s-th Lannes–Zarati homomorphism vanishes in any positive stems for . In the article, we prove the conjecture for the fifth Lannes–Zarati homomorphism.
La conjecture sur les classes sphériques affirme que les classes détectées par l'invariant de Hopf et l'invariant de Kervaire sont les seules dans dans l'image de l'homomorphisme de Hurewicz. L'homomorphisme de Lannes–Zarati est l'application correspondant au gradué (pour une certaine filtration) de l'homomorphisme de Hurewicz. La version algébrique de la conjecture prédit que le s-ième homomorphisme de Lannes–Zarati s'annule en tout degré positif pour . Dans cette note, nous démontrons la conjecture pour le cinquième homomorphisme de Lannes–Zarati.
Accepted:
Published online:
Nguyễn H.V. Hưng 1; Võ T.N. Quỳnh 1; Ngô A. Tuấn 1
@article{CRMATH_2014__352_3_251_0, author = {Nguyễn H.V. Hưng and V\~o T.N. Quỳnh and Ng\^o A. Tuấn}, title = {On the vanishing of the {Lannes{\textendash}Zarati} homomorphism}, journal = {Comptes Rendus. Math\'ematique}, pages = {251--254}, publisher = {Elsevier}, volume = {352}, number = {3}, year = {2014}, doi = {10.1016/j.crma.2014.01.013}, language = {en}, }
Nguyễn H.V. Hưng; Võ T.N. Quỳnh; Ngô A. Tuấn. On the vanishing of the Lannes–Zarati homomorphism. Comptes Rendus. Mathématique, Volume 352 (2014) no. 3, pp. 251-254. doi : 10.1016/j.crma.2014.01.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.01.013/
[1] On the non-existence of elements of Hopf invariant one, Ann. Math., Volume 72 (1960), pp. 20-104
[2] The mod p lower central series and the Adams spectral sequence, Topology, Volume 5 (1966), pp. 331-342
[3] The Kervaire invariant of a framed manifold and its generalization, Ann. Math., Volume 90 (1969), pp. 157-186
[4] Determination of , Topol. Appl., Volume 158 (2011), pp. 660-689
[5] The Dyer–Lashof algebra and the lambda algebra, Ill. J. Math., Volume 18 (1975), pp. 231-246
[6] A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., Volume 12 (1911), pp. 75-98
[7] A-generators for ideals in the Dickson algebra, J. Pure Appl. Algebra, Volume 158 (2001), pp. 161-182
[8] Unstable projectives and stable Ext: with applications, Proc. Lond. Math. Soc., Volume 53 (1986), pp. 539-561
[9] Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 3893-3910
[10] The weak conjecture on spherical classes, Math. Z., Volume 231 (1999), pp. 727-743
[11] Spherical classes and the lambda algebra, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 4447-4460
[12] On triviality of Dickson invariants in the homology of the Steenrod algebra, Math. Proc. Camb. Philos. Soc., Volume 134 (2003), pp. 103-113
[13] The hit problem for the Dickson algebra, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 5029-5040
[14] Spherical classes and the Dickson algebra, Math. Proc. Camb. Philos. Soc., Volume 124 (1998), pp. 253-264
[15] Sur le n-dual du n-ème spectre de Brown–Gitler, Math. Z., Volume 199 (1988), pp. 29-42
[16] Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987), pp. 25-59
[17] Invariant theory and the lambda algebra, Trans. Amer. Math. Soc., Volume 280 (1983), pp. 673-693
[18] On and the Arf invariant of framed manifolds, Contemp. Math., Volume 12 (1982), pp. 299-313
[19] The unstable Adams spectral sequence of free iterated loop spaces, Mem. Amer. Math. Soc., Volume 258 (1982)
Cited by Sources:
☆ The work was supported in part by a Grant of the NAFOSTED.
Comments - Policy