An initial-boundary value problem for the KdV equation posed on a bounded interval is considered. The theory of Jacobi elliptic functions is used to obtain a new kind of stationary waves which are spatially periodic with a period equal to an interval length. The properties of those solutions are studied.
On considère un problème avec donnée initiale et au bord pour l'équation de KdV posée sur un intervalle borné. La théorie des fonctions elliptiques de Jacobi est utilisée pour obtenir un nouveau type d'ondes stationnaires qui sont périodiques en espace avec une période égale à une longueur d'intervalle. Les propriétés de ces solutions sont étudiées.
Accepted:
Published online:
Gleb Germanovitch Doronin 1; Fábio M. Natali 1
@article{CRMATH_2014__352_5_421_0, author = {Gleb Germanovitch Doronin and F\'abio M. Natali}, title = {An example of non-decreasing solution for the {KdV} equation posed on a bounded interval}, journal = {Comptes Rendus. Math\'ematique}, pages = {421--424}, publisher = {Elsevier}, volume = {352}, number = {5}, year = {2014}, doi = {10.1016/j.crma.2014.02.001}, language = {en}, }
TY - JOUR AU - Gleb Germanovitch Doronin AU - Fábio M. Natali TI - An example of non-decreasing solution for the KdV equation posed on a bounded interval JO - Comptes Rendus. Mathématique PY - 2014 SP - 421 EP - 424 VL - 352 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2014.02.001 LA - en ID - CRMATH_2014__352_5_421_0 ER -
Gleb Germanovitch Doronin; Fábio M. Natali. An example of non-decreasing solution for the KdV equation posed on a bounded interval. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 421-424. doi : 10.1016/j.crma.2014.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.02.001/
[1] Periodic traveling-wave solutions of nonlinear dispersive evolution equations, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 4841-4873
[2] A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1391-1436
[3] Handbook of Elliptic Integrals for Engineers and Scientists, Springer, NY, 1971
[4] Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain, SIAM J. Control Optim., Volume 46 (2007), pp. 877-899
[5] Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009), pp. 457-475
[6] Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., Volume 6 (2004), pp. 367-398
[7] Initial–boundary value problems for quasilinear dispersive equations posed on a bounded interval, Electron. J. Differ. Equ., Volume 1 (2010), pp. 1-20
[8] On the dual Petrov–Galerkin formulation of the KdV equation on a finite interval, Adv. Differ. Equ., Volume 12 (2007), pp. 221-239
[9] Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation, SIAM Rev., Volume 14 (1972), pp. 582-643
[10] Stabilization of the Korteweg–de Vries equation with localized damping, Q. Appl. Math., Volume 60 (2002), pp. 111-129
[11] Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., Volume 2 (1997), pp. 33-55
[12] Exact boundary controllability of the Korteweg–de Vries equation, SIAM J. Control Optim., Volume 37 (1999), pp. 543-565
Cited by Sources:
Comments - Policy