Comptes Rendus
Partial differential equations/Optimal control
Global exact controllability of 1d Schrödinger equations with a polarizability term
Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 425-429.

We consider a quantum particle in a 1d interval submitted to a potential. The evolution of this particle is controlled using an external electric field. Taking into account the so-called polarizability term in the model (quadratic with respect to the control), we prove global exact controllability in a suitable space for arbitrary potential and arbitrary dipole moment. This term is relevant both from the mathematical and physical points of view. The proof uses tools from the bilinear setting and a perturbation argument.

On considère une particule quantique dans un intervalle 1d, soumise à un potentiel. L'évolution de cette particule est contrôlée par un champ électrique extérieur. En prenant en compte dans le modèle le terme dit de polarisabilité (quadratique par rapport au contrôle), on prouve la contrôlabilité exacte globale dans un espace approprié pour des potentiels et des moments dipolaires arbitraires. Ce terme est intéressant à la fois d'un point de vue mathématique et physique. La preuve utilise des outils issus du cadre bilinéaire et un argument de perturbation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.03.013

Morgan Morancey 1, 2; Vahagn Nersesyan 3

1 CMLS UMR 7640, École polytechnique, 91128 Palaiseau, France
2 CMLA ENS Cachan, 61, avenue du Président-Wilson, 94235 Cachan, France
3 Laboratoire de mathématiques, UMR CNRS 8100, Université de Versailles–Saint-Quentin-en-Yvelines, 78035 Versailles, France
@article{CRMATH_2014__352_5_425_0,
     author = {Morgan Morancey and Vahagn Nersesyan},
     title = {Global exact controllability of 1d {Schr\"odinger} equations with a polarizability term},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {425--429},
     publisher = {Elsevier},
     volume = {352},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.013},
     language = {en},
}
TY  - JOUR
AU  - Morgan Morancey
AU  - Vahagn Nersesyan
TI  - Global exact controllability of 1d Schrödinger equations with a polarizability term
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 425
EP  - 429
VL  - 352
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2014.03.013
LA  - en
ID  - CRMATH_2014__352_5_425_0
ER  - 
%0 Journal Article
%A Morgan Morancey
%A Vahagn Nersesyan
%T Global exact controllability of 1d Schrödinger equations with a polarizability term
%J Comptes Rendus. Mathématique
%D 2014
%P 425-429
%V 352
%N 5
%I Elsevier
%R 10.1016/j.crma.2014.03.013
%G en
%F CRMATH_2014__352_5_425_0
Morgan Morancey; Vahagn Nersesyan. Global exact controllability of 1d Schrödinger equations with a polarizability term. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 425-429. doi : 10.1016/j.crma.2014.03.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.013/

[1] K. Beauchard Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. (9), Volume 84 (2005) no. 7, pp. 851-956

[2] K. Beauchard; C. Laurent Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl. (9), Volume 94 (2010) no. 5, pp. 520-554

[3] K. Beauchard; V. Nersesyan Semi-global weak stabilization of bilinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 19–20, pp. 1073-1078

[4] N. Boussaid; M. Caponigro; T. Chambrion Approximate controllability of the Schrödinger equation with a polarizability term, Maui, Hawaii, USA (December 2012), pp. 3024-3029

[5] M. Caponigro; U. Boscain; T. Chambrion; M. Sigalotti Control of the bilinear Schrödinger equation for fully coupling potentials, Milan, Italy (2011)

[6] T. Chambrion; P. Mason; M. Sigalotti; U. Boscain Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 329-349

[7] J.-M. Coron; A. Grigoriu; C. Lefter; G. Turinici Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling, New. J. Phys., Volume 11 (2009) no. 10, p. 105034

[8] C.M. Dion; A. Keller; O. Atabek; A.D. Bandrauk Laser-induced alignment dynamics of HCN: roles of the permanent dipole moment and the polarizability, Phys. Rev., Volume 59 (1999), p. 1382

[9] A. Grigoriu Stability analysis of discontinuous quantum control systems with dipole and polarizability coupling, Automatica J. IFAC, Volume 48 (2012) no. 9, pp. 2229-2234

[10] A. Grigoriu; C. Lefter; G. Turinici Lyapunov control of Schrödinger equation: beyond the dipole approximations, Innsbruck, Austria (2009), pp. 119-123

[11] M. Morancey Explicit approximate controllability of the Schrödinger equation with a polarizability term, Math. Control Signals Systems, Volume 25 (2013) no. 3, pp. 407-432

[12] M. Morancey; V. Nersesyan Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, 2013 J. Math. Pures Appl. (9), in press, preprint | arXiv

[13] V. Nersesyan Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 27 (2010) no. 3, pp. 901-915

[14] V. Nersesyan; H. Nersisyan Global exact controllability in infinite time of Schrödinger equation, J. Math. Pures Appl., Volume 97 (2012) no. 4, pp. 295-317

[15] G. Turinici Beyond bilinear controllability: applications to quantum control, Control of Coupled Partial Differential Equations, Internat. Ser. Numer. Math., vol. 155, Birkhäuser, Basel, Switzerland, 2007, pp. 293-309

Cited by Sources:

Comments - Policy