Comptes Rendus
Logic/Geometry
The six Grothendieck operations on o-minimal sheaves
[Les six opérations de Grothendieck sur les faisceaux o-minimaux]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 455-458.

Dans cette note, nous esquissons notre travail sur le formalisme des six opérations de Grothendieck sur les faisceaux o-minimaux. En tant qu'application à la théorie des groupes définissables, nous montrons que la cohomologie d'un groupe définissablement compact avec coefficients dans un corps est une algèbre de Hopf connexe, bornée, de type fini.

In this note, we report on our work on the formalism of the Grothendieck six operations on o-minimal sheaves. As an application to the theory of definable groups, we see that the cohomology of a definably compact group with coefficients in a field is a connected, bounded, Hopf algebra of finite type.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.03.021

Mário J. Edmundo 1, 2 ; Luca Prelli 2

1 Universidade Aberta, Campus do Tagus Park, Edifício Inovação I, Av. Dr. Jaques Delors, 2740-122 Porto Salvo, Oeiras, Portugal
2 CMAF Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
@article{CRMATH_2014__352_6_455_0,
     author = {M\'ario J. Edmundo and Luca Prelli},
     title = {The six {Grothendieck} operations on o-minimal sheaves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {455--458},
     publisher = {Elsevier},
     volume = {352},
     number = {6},
     year = {2014},
     doi = {10.1016/j.crma.2014.03.021},
     language = {en},
}
TY  - JOUR
AU  - Mário J. Edmundo
AU  - Luca Prelli
TI  - The six Grothendieck operations on o-minimal sheaves
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 455
EP  - 458
VL  - 352
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2014.03.021
LA  - en
ID  - CRMATH_2014__352_6_455_0
ER  - 
%0 Journal Article
%A Mário J. Edmundo
%A Luca Prelli
%T The six Grothendieck operations on o-minimal sheaves
%J Comptes Rendus. Mathématique
%D 2014
%P 455-458
%V 352
%N 6
%I Elsevier
%R 10.1016/j.crma.2014.03.021
%G en
%F CRMATH_2014__352_6_455_0
Mário J. Edmundo; Luca Prelli. The six Grothendieck operations on o-minimal sheaves. Comptes Rendus. Mathématique, Volume 352 (2014) no. 6, pp. 455-458. doi : 10.1016/j.crma.2014.03.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.021/

[1] A. Berarducci Cohomology of groups in o-minimal structures: acyclicity of the infinitesimal subgroup, J. Symb. Log., Volume 74 (2009) no. 3, pp. 891-900

[2] G. Bredon Sheaf Theory, Grad. Texts Math., vol. 170, Springer-Verlag, New York, 1997

[3] H. Delfs Homology of Locally Semialgebraic Spaces, Lect. Notes Math., vol. 1484, Springer-Verlag, Berlin, 1991

[4] L. van den Dries Tame Topology and o-Minimal Structures, Lond. Math. Soc. Lect. Note Ser., vol. 248, Cambridge University Press, Cambridge, UK, 1998

[5] M. Edmundo; G. Jones; N. Peatfield Sheaf cohomology in o-minimal structures, J. Math. Log., Volume 6 (2006) no. 2, pp. 163-179

[6] M. Edmundo; M. Otero Definably compact Abelian groups, J. Math. Log., Volume 4 (2004) no. 2, pp. 163-180

[7] M. Edmundo; L. Prelli Poincaré–Verdier duality in o-minimal structures, Ann. Inst. Fourier Grenoble, Volume 60 (2010) no. 4, pp. 1259-1288

[8] M. Edmundo; L. Prelli Invariance of o-minimal cohomology with definably compact supports | arXiv

[9] M. Kashiwara; P. Schapira Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292, Springer-Verlag, Berlin, 1990

[10] M. Kashiwara; P. Schapira Ind-sheaves, Astérisque, Volume 271 (2001)

[11] M. Kashiwara; P. Schapira Categories and Sheaves, Grundlehren Math. Wiss., vol. 332, Springer-Verlag, Berlin, 2006

[12] M. Otero A survey on groups definable in o-minimal structures (Z. Chatzidakis; D. Macpherson; A. Pillay; A. Wilkie, eds.), Model Theory with Applications to Algebra and Analysis, vol. 2, Lond. Math. Soc. Lect. Note Ser., vol. 350, Cambridge University Press, Cambridge, UK, 2008, pp. 177-206

[13] Y. Peterzil; C. Steinhorn Definable compacteness and definable subgroups of o-minimal groups, J. Lond. Math. Soc., Volume 59 (1999) no. 2, pp. 769-786

[14] A. Pillay Sheaves of continuous definable functions, J. Symb. Log., Volume 53 (1988) no. 4, pp. 1165-1169

[15] L. Prelli Sheaves on subanalytic sites, Rend. Semin. Mat. Univ. Padova, Volume 120 (2008), pp. 167-216

Cité par Sources :

The first author was supported by Fundação para a Ciência e a Tecnologia, Financiamento Base 2008 – ISFL/1/209. The second author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and was supported by Marie Curie grant PIEF-GA-2010-272021. This work is part of the FCT project PTDC/MAT/101740/2008.

Commentaires - Politique