The aim of this work is to justify mathematically the derivation of a viscous free/congested zones two-phase model from the isentropic compressible Navier–Stokes equations with a singular pressure playing the role of a barrier.
Le but de cette contribution est de justifier mathématiquement l'obtention d'un modèle biphasique visqueux gérant zones libres/zones congestionnées comme limite singulière des équations de Navier–Stokes compressibles barotropes à l'aide d'une pression singulière jouant le rôle d'une barrière. Ce type de systèmes macroscopiques permettant de modéliser le mouvement d'une foule a été proposé dans de nombreux articles. Le lecteur interessé pourra se reporter, par exemple, à la revue de B. Maury [9].
Accepted:
Published online:
Didier Bresch 1; Charlotte Perrin 1; Ewelina Zatorska 2, 3
@article{CRMATH_2014__352_9_685_0, author = {Didier Bresch and Charlotte Perrin and Ewelina Zatorska}, title = {Singular limit of a {Navier{\textendash}Stokes} system leading to a free/congested zones two-phase model}, journal = {Comptes Rendus. Math\'ematique}, pages = {685--690}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.06.009}, language = {en}, }
TY - JOUR AU - Didier Bresch AU - Charlotte Perrin AU - Ewelina Zatorska TI - Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model JO - Comptes Rendus. Mathématique PY - 2014 SP - 685 EP - 690 VL - 352 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2014.06.009 LA - en ID - CRMATH_2014__352_9_685_0 ER -
%0 Journal Article %A Didier Bresch %A Charlotte Perrin %A Ewelina Zatorska %T Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model %J Comptes Rendus. Mathématique %D 2014 %P 685-690 %V 352 %N 9 %I Elsevier %R 10.1016/j.crma.2014.06.009 %G en %F CRMATH_2014__352_9_685_0
Didier Bresch; Charlotte Perrin; Ewelina Zatorska. Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 685-690. doi : 10.1016/j.crma.2014.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.009/
[1] Existence and weak stability for a pressureless model with unilateral constraint, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 249-272
[2] A model for the evolution of traffic jams in multi-lane, Kinet. Relat. Models, Volume 5 (2012) no. 4, pp. 697-728
[3] Equation of state for nonreacting rigid spheres, J. Chem. Phys., Volume 51 (1969), pp. 635-638
[4] Self-organized hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., Volume 237 (2013), pp. 299-319
[5] Numerical simulations of the Euler system with congestion constraint, J. Comput. Phys., Volume 230 (2011), pp. 8057-8088
[6] Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 7, pp. 1129-1160
[7] A free boundary model for Korteweg fluids as a limit of barotropic compressible Navier–Stokes equations, Methods Appl. Anal., Volume 20 (2013) no. 2, pp. 165-177
[8] On a free boundary barotropic model, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 16 (1999) no. 3, pp. 373-410
[9] B. Maury, Prise en compte de la congestion dans les modèles de mouvements de foules, in: Actes des colloques Caen 2012–Rouen 2011.
[10] C. Perrin, E. Zatorska, A free/congested two-phase model from weak solutions to compressible Navier–Stokes equations, in preparation.
[11] Compact sets in the space , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65-96
[12] The solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 56 (1976), pp. 128-142 (197)
Cited by Sources:
Comments - Policy