Comptes Rendus
Algebraic geometry
Normalized non-Archimedean links and surface singularities
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 719-723.

We define a non-Archimedean analytic version of the link of a singularity, and we use it to study surfaces over an algebraically closed field. This yields a characterization of log essential valuations.

On définit un analogue en géométrie analytique non archimédienne de l'entrelac d'une singularité, et on l'utilise pour étudier les surfaces sur un corps algébriquement clos. Cela donne une caractérisation des valuations log-essentielles.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.06.010
Lorenzo Fantini 1

1 University of Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
@article{CRMATH_2014__352_9_719_0,
     author = {Lorenzo Fantini},
     title = {Normalized {non-Archimedean} links and surface singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {719--723},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.06.010},
     language = {en},
}
TY  - JOUR
AU  - Lorenzo Fantini
TI  - Normalized non-Archimedean links and surface singularities
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 719
EP  - 723
VL  - 352
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2014.06.010
LA  - en
ID  - CRMATH_2014__352_9_719_0
ER  - 
%0 Journal Article
%A Lorenzo Fantini
%T Normalized non-Archimedean links and surface singularities
%J Comptes Rendus. Mathématique
%D 2014
%P 719-723
%V 352
%N 9
%I Elsevier
%R 10.1016/j.crma.2014.06.010
%G en
%F CRMATH_2014__352_9_719_0
Lorenzo Fantini. Normalized non-Archimedean links and surface singularities. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 719-723. doi : 10.1016/j.crma.2014.06.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.010/

[1] V.G. Berkovich Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990

[2] V.G. Berkovich Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS (1993), pp. 5-161

[3] S. Bosch; W. Lütkebohmert Stable reduction and uniformization of Abelian varieties. I, Math. Ann., Volume 270 (1985) no. 3, pp. 349-379

[4] S. Bosch; W. Lütkebohmert Formal and rigid geometry. I. Rigid spaces, Math. Ann., Volume 295 (1993) no. 2, pp. 291-317

[5] A. Ducros La structure des courbes analytiques http://www.math.jussieu.fr/~ducros/livre.html (book in preparation. Preliminary version available on)

[6] C. Favre; M. Jonsson The Valuative Tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004

[7] M. Jonsson; M. Mustaţă Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 6, pp. 2145-2209

[8] Q. Liu Sur les espaces de Stein quasi-compacts en géométrie rigide, Tohoku Math. J. (2), Volume 42 (1990) no. 3, pp. 289-306

[9] J.J.F. Nash Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38

[10] A. Thuillier Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d'homotopie de certains schémas formels, Manuscr. Math., Volume 123 (2007) no. 4, pp. 381-451

Cited by Sources:

Comments - Policy


Articles of potential interest

On the homeomorphism type of some spaces of valuations

Ana Belén de Felipe

C. R. Math (2015)


Théorème d'équidistribution de Brolin en dynamique p-adique

Charles Favre; Juan Rivera-Letelier

C. R. Math (2004)


Continuité des racines d’après Rabinoff

Emeryck Marie

C. R. Math (2023)