We define a non-Archimedean analytic version of the link of a singularity, and we use it to study surfaces over an algebraically closed field. This yields a characterization of log essential valuations.
On définit un analogue en géométrie analytique non archimédienne de l'entrelac d'une singularité, et on l'utilise pour étudier les surfaces sur un corps algébriquement clos. Cela donne une caractérisation des valuations log-essentielles.
Accepted:
Published online:
Lorenzo Fantini 1
@article{CRMATH_2014__352_9_719_0, author = {Lorenzo Fantini}, title = {Normalized {non-Archimedean} links and surface singularities}, journal = {Comptes Rendus. Math\'ematique}, pages = {719--723}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.06.010}, language = {en}, }
Lorenzo Fantini. Normalized non-Archimedean links and surface singularities. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 719-723. doi : 10.1016/j.crma.2014.06.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.06.010/
[1] Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990
[2] Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHÉS (1993), pp. 5-161
[3] Stable reduction and uniformization of Abelian varieties. I, Math. Ann., Volume 270 (1985) no. 3, pp. 349-379
[4] Formal and rigid geometry. I. Rigid spaces, Math. Ann., Volume 295 (1993) no. 2, pp. 291-317
[5] La structure des courbes analytiques http://www.math.jussieu.fr/~ducros/livre.html (book in preparation. Preliminary version available on)
[6] The Valuative Tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004
[7] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 6, pp. 2145-2209
[8] Sur les espaces de Stein quasi-compacts en géométrie rigide, Tohoku Math. J. (2), Volume 42 (1990) no. 3, pp. 289-306
[9] Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38
[10] Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d'homotopie de certains schémas formels, Manuscr. Math., Volume 123 (2007) no. 4, pp. 381-451
Cited by Sources:
Comments - Policy