We extend the Hybrid High-Order method introduced by the authors for the Poisson problem to problems with heterogeneous/anisotropic diffusion. The cornerstone is a local discrete gradient reconstruction from element- and face-based polynomial degrees of freedom. Optimal error estimates are proved.
Nous étendons la méthode hybride d'ordre élevé conçue par les auteurs pour le problème de Poisson à des problèmes de diffusion hétérogène/anisotrope. La pierre angulaire est une reconstruction locale du gradient discret à partir des degrés de liberté polynomiaux sur les éléments et les faces. On établit des estimations d'erreur optimales.
Accepted:
Published online:
Daniele A. Di Pietro 1; Alexandre Ern 2
@article{CRMATH_2015__353_1_31_0, author = {Daniele A. Di Pietro and Alexandre Ern}, title = {Hybrid high-order methods for variable-diffusion problems on general meshes}, journal = {Comptes Rendus. Math\'ematique}, pages = {31--34}, publisher = {Elsevier}, volume = {353}, number = {1}, year = {2015}, doi = {10.1016/j.crma.2014.10.013}, language = {en}, }
Daniele A. Di Pietro; Alexandre Ern. Hybrid high-order methods for variable-diffusion problems on general meshes. Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 31-34. doi : 10.1016/j.crma.2014.10.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.013/
[1] Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., Volume 49 (2011) no. 5, pp. 1737-1760
[2] Basic principles of virtual element methods, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 199-214
[3] Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes, Math. Model. Numer. Anal., Volume 48 (2014) no. 2, pp. 553-581
[4] Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications, vol. 69, Springer-Verlag, Berlin, 2012
[5] A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng., Volume 283 (2015), pp. 1-21
[6] A family of arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes, 2014 (submitted for publication, preprint hal-00918482) | HAL
[7] An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math., Volume 14 (2014) no. 4, pp. 461-472 | DOI
[8] A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 2, pp. 265-295
[9] A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation, J. Comput. Phys., Volume 272 (2014), pp. 360-385
Cited by Sources:
Comments - Policy