Comptes Rendus
Complex analysis/Differential geometry
A note on the Bergman Kernel
Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 121-125.

It is known that the Bergman kernel associated with Lk, where L is positive line bundle over a complex compact manifold, has an asymptotic expansion. We give an elementary proof of the fact that the subprincipal term of this expansion is the scalar curvature.

Il est connu que le noyau de Bergman associé à Lk, où L est un fibré en droite positif sur une variété complexe compacte, admet un développement asymptotique. Nous prouvons de manière élémentaire que le terme sous-principal de ce développement est donné par la courbure scalaire.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.11.007

Laurent Charles 1

1 Institut de mathématiques de Jussieu-Paris rive gauche, 4, place Jussieu, 75252 Paris, France
@article{CRMATH_2015__353_2_121_0,
     author = {Laurent Charles},
     title = {A note on the {Bergman} {Kernel}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {121--125},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.11.007},
     language = {en},
}
TY  - JOUR
AU  - Laurent Charles
TI  - A note on the Bergman Kernel
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 121
EP  - 125
VL  - 353
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2014.11.007
LA  - en
ID  - CRMATH_2015__353_2_121_0
ER  - 
%0 Journal Article
%A Laurent Charles
%T A note on the Bergman Kernel
%J Comptes Rendus. Mathématique
%D 2015
%P 121-125
%V 353
%N 2
%I Elsevier
%R 10.1016/j.crma.2014.11.007
%G en
%F CRMATH_2015__353_2_121_0
Laurent Charles. A note on the Bergman Kernel. Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 121-125. doi : 10.1016/j.crma.2014.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.11.007/

[1] Robert Berman; Bo Berndtsson; Johannes Sjöstrand A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008) no. 2, pp. 197-217

[2] B. Berndtsson Bergman kernels related to Hermitian line bundles over compact complex manifolds, Explorations in Complex and Riemannian Geometry, Contemp. Math., vol. 332, 2003, pp. 1-17

[3] Thierry Bouche Convergence de la métrique de Fubini–Study d'un fibré linéaire positif, Ann. Inst. Fourier (Grenoble), Volume 40 (1990) no. 1, pp. 117-130

[4] L. Boutet de Monvel; J. Sjöstrand Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux dérivées partielles de Rennes (1975), Astérisque, vols. 34–35, Soc. Math. France, Paris, 1976, pp. 123-164

[5] David Catlin The Bergman kernel and a theorem of Tian, Katata, 1997 (Trends Math.), Birkhäuser Boston, Boston, MA, USA (1999), pp. 1-23

[6] L. Charles Berezin–Toeplitz operators, a semi-classical approach, Commun. Math. Phys., Volume 239 (2003) no. 1–2, pp. 1-28

[7] L. Charles Quasimodes and Bohr–Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations, Volume 28 (2003) no. 9–10, pp. 1527-1566

[8] L. Charles Symbolic calculus for Toeplitz operators with half-form, J. Symplectic Geom., Volume 4 (2006) no. 2, pp. 171-198

[9] Xianzhe Dai; Kefeng Liu; Xiaonan Ma On the asymptotic expansion of Bergman kernel, J. Differential Geom., Volume 72 (2006) no. 1, pp. 1-41

[10] Jean-Pierre Demailly Multiplier ideal sheaves and analytic methods in algebraic geometry, Trieste, Italy, 2000 (ICTP Lect. Notes), Volume vol. 6, Abdus Salam Int. Cent. Theoret. Phys. (2001), pp. 1-148

[11] S.K. Donaldson Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522

[12] S.K. Donaldson Discussion of the Kähler–Einstein problem, 2009 http://wwwf.imperial.ac.uk/?skdona/KENOTES.PDF

[13] Joel Fine Quantization and the Hessian of Mabuchi energy, Duke Math. J., Volume 161 (2012) no. 14, pp. 2753-2798

[14] Lars Hörmander The analysis of linear partial differential operators. I, Distribution Theory and Fourier Analysis, Grundlehren Math. Wiss., Fundamental Principles of Mathematical Sciences, vol. 256, Springer-Verlag, Berlin, 1990

[15] Zhiqin Lu On the lower-order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273

[16] Xiaonan Ma; G. Marinescu Holomorphic Morse Inequalities and Bergman Kernels, Prog. Math., vol. 254, Birkhäuser Verlag, Basel, Switzerland, 2007

[17] Xiaonan Ma; G. Marinescu Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008) no. 4, pp. 1756-1815

[18] Xiaonan Ma; G. Marinescu Berezin–Toeplitz quantization on Kähler manifolds, J. Reine Angew. Math., Volume 662 (2012), pp. 1-56

[19] Gang Tian On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990) no. 1, pp. 99-130

[20] Hao Xu A closed formula for the asymptotic expansion of the Bergman kernel, Commun. Math. Phys., Volume 314 (2012) no. 3, pp. 555-585

[21] S. Zelditch Szegő kernels and a theorem of Tian, Int. Math. Res. Not., Volume 6 (1998), pp. 317-331

Cited by Sources:

Comments - Policy