It is known that the Bergman kernel associated with , where L is positive line bundle over a complex compact manifold, has an asymptotic expansion. We give an elementary proof of the fact that the subprincipal term of this expansion is the scalar curvature.
Il est connu que le noyau de Bergman associé à , où L est un fibré en droite positif sur une variété complexe compacte, admet un développement asymptotique. Nous prouvons de manière élémentaire que le terme sous-principal de ce développement est donné par la courbure scalaire.
Accepted:
Published online:
Laurent Charles 1
@article{CRMATH_2015__353_2_121_0, author = {Laurent Charles}, title = {A note on the {Bergman} {Kernel}}, journal = {Comptes Rendus. Math\'ematique}, pages = {121--125}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.11.007}, language = {en}, }
Laurent Charles. A note on the Bergman Kernel. Comptes Rendus. Mathématique, Volume 353 (2015) no. 2, pp. 121-125. doi : 10.1016/j.crma.2014.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.11.007/
[1] A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008) no. 2, pp. 197-217
[2] Bergman kernels related to Hermitian line bundles over compact complex manifolds, Explorations in Complex and Riemannian Geometry, Contemp. Math., vol. 332, 2003, pp. 1-17
[3] Convergence de la métrique de Fubini–Study d'un fibré linéaire positif, Ann. Inst. Fourier (Grenoble), Volume 40 (1990) no. 1, pp. 117-130
[4] Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux dérivées partielles de Rennes (1975), Astérisque, vols. 34–35, Soc. Math. France, Paris, 1976, pp. 123-164
[5] The Bergman kernel and a theorem of Tian, Katata, 1997 (Trends Math.), Birkhäuser Boston, Boston, MA, USA (1999), pp. 1-23
[6] Berezin–Toeplitz operators, a semi-classical approach, Commun. Math. Phys., Volume 239 (2003) no. 1–2, pp. 1-28
[7] Quasimodes and Bohr–Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations, Volume 28 (2003) no. 9–10, pp. 1527-1566
[8] Symbolic calculus for Toeplitz operators with half-form, J. Symplectic Geom., Volume 4 (2006) no. 2, pp. 171-198
[9] On the asymptotic expansion of Bergman kernel, J. Differential Geom., Volume 72 (2006) no. 1, pp. 1-41
[10] Multiplier ideal sheaves and analytic methods in algebraic geometry, Trieste, Italy, 2000 (ICTP Lect. Notes), Volume vol. 6, Abdus Salam Int. Cent. Theoret. Phys. (2001), pp. 1-148
[11] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522
[12] Discussion of the Kähler–Einstein problem, 2009 http://wwwf.imperial.ac.uk/?skdona/KENOTES.PDF
[13] Quantization and the Hessian of Mabuchi energy, Duke Math. J., Volume 161 (2012) no. 14, pp. 2753-2798
[14] The analysis of linear partial differential operators. I, Distribution Theory and Fourier Analysis, Grundlehren Math. Wiss., Fundamental Principles of Mathematical Sciences, vol. 256, Springer-Verlag, Berlin, 1990
[15] On the lower-order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273
[16] Holomorphic Morse Inequalities and Bergman Kernels, Prog. Math., vol. 254, Birkhäuser Verlag, Basel, Switzerland, 2007
[17] Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008) no. 4, pp. 1756-1815
[18] Berezin–Toeplitz quantization on Kähler manifolds, J. Reine Angew. Math., Volume 662 (2012), pp. 1-56
[19] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990) no. 1, pp. 99-130
[20] A closed formula for the asymptotic expansion of the Bergman kernel, Commun. Math. Phys., Volume 314 (2012) no. 3, pp. 555-585
[21] Szegő kernels and a theorem of Tian, Int. Math. Res. Not., Volume 6 (1998), pp. 317-331
Cited by Sources:
Comments - Policy