We prove the following analogue of Silverman's results [9] for pairs of maps.
Let be an integer, a number field, and the norm of an ideal . Let be non-constant and not of the form , . Denote , , and the ℓ-th iteration of F. There are constants , depending on d and h such that the following holds.
For almost all prime ideals , there is a finite subset , such that if at least one of the sets
| (1) |
Nous prouvons l'analogue suivant des résultats de Silverman [9] pour les paires d'applications.
Soit un entier, un corps de nombres, et la norme d'un idéal . Soit un polynôme non constant qui n'est pas de la forme , . Posons , et les itérés de F. Il existe des constantes , , dépendant de d et h, possédant la propriété suivante : pour presque tout idéal premier , il y a un sous-ensemble , tel que si , au moins un des ensembles
Accepted:
Published online:
Mei-Chu Chang 1
@article{CRMATH_2015__353_4_283_0,
author = {Mei-Chu Chang},
title = {On periods modulo \protect\emph{p} in arithmetic dynamics},
journal = {Comptes Rendus. Math\'ematique},
pages = {283--285},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {4},
doi = {10.1016/j.crma.2015.01.007},
language = {en},
}
Mei-Chu Chang. On periods modulo p in arithmetic dynamics. Comptes Rendus. Mathématique, Volume 353 (2015) no. 4, pp. 283-285. doi: 10.1016/j.crma.2015.01.007
[1] Periods of orbits modulo primes, J. Number Theory, Volume 129 (2009), pp. 2831-2842
[2] Preperiodic points and unlikely intersections, Duke Math. J., Volume 159 (2011), pp. 1-29
[3] Special curves and postcritically-finite polynomials, Forum Math. Pi, Volume 1 (2013) e3 (35 p.)
[4] Effective Bezout identities in , Acta Math., Volume 166 (1991), pp. 69-120
[5] Elements of large order in prime finite fields, Bull. Aust. Math. Soc., Volume 88 (2013), pp. 169-176
[6] D. Ghioca, H. Krieger, K. Nguyen, A case of the dynamical Andre–Oort conjecture, Preprint.
[7] Preperiodic points for families of polynomials, Algebra Number Theory, Volume 7 (2012), pp. 701-732
[8] Preperiodic points for families of rational maps, Proc. Lond. Math. Soc. (2015) (in press) | arXiv
[9] Variation of periods modulo p in arithmetic dynamics, N.Y. J. Math., Volume 14 (2008), pp. 601-616
Cited by Sources:
Comments - Policy
