The well-known partition function , which is the number of solutions of the equation with integers , has a long research history. In this note, we investigate a new partition function. Let be the number of solutions of the equation with integers , where denotes the integral part of x. We prove that for two explicit positive constants and .
La fonction de partition bien connue , qui compte le nombre de solutions de l'équation en entiers , a une longue histoire. Nous étudions dans cette Note une nouvelle fonction de partition. Soit le nombre de solutions de l'équation en entiers , où désigne la partie entière de x. Nous montrons que pour deux constantes positives explicites et .
Accepted:
Published online:
Yong-Gao Chen 1; Ya-Li Li 1
@article{CRMATH_2015__353_4_287_0,
author = {Yong-Gao Chen and Ya-Li Li},
title = {On the square-root partition function},
journal = {Comptes Rendus. Math\'ematique},
pages = {287--290},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {4},
doi = {10.1016/j.crma.2015.01.013},
language = {en},
}
Yong-Gao Chen; Ya-Li Li. On the square-root partition function. Comptes Rendus. Mathématique, Volume 353 (2015) no. 4, pp. 287-290. doi: 10.1016/j.crma.2015.01.013
[1] On the number of factorizations of an integer, Integers, Volume 11 (2011) (A12, 5 p)
Cited by Sources:
☆ This work was supported by the National Natural Science Foundation of China (No. 11371195) and PAPD.
Comments - Policy
