The well-known partition function , which is the number of solutions of the equation with integers , has a long research history. In this note, we investigate a new partition function. Let be the number of solutions of the equation with integers , where denotes the integral part of x. We prove that for two explicit positive constants and .
La fonction de partition bien connue , qui compte le nombre de solutions de l'équation en entiers , a une longue histoire. Nous étudions dans cette Note une nouvelle fonction de partition. Soit le nombre de solutions de l'équation en entiers , où désigne la partie entière de x. Nous montrons que pour deux constantes positives explicites et .
Accepted:
Published online:
Yong-Gao Chen 1; Ya-Li Li 1
@article{CRMATH_2015__353_4_287_0, author = {Yong-Gao Chen and Ya-Li Li}, title = {On the square-root partition function}, journal = {Comptes Rendus. Math\'ematique}, pages = {287--290}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.013}, language = {en}, }
Yong-Gao Chen; Ya-Li Li. On the square-root partition function. Comptes Rendus. Mathématique, Volume 353 (2015) no. 4, pp. 287-290. doi : 10.1016/j.crma.2015.01.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.01.013/
[1] On the number of factorizations of an integer, Integers, Volume 11 (2011) (A12, 5 p)
Cited by Sources:
☆ This work was supported by the National Natural Science Foundation of China (No. 11371195) and PAPD.
Comments - Policy