Comptes Rendus
Partial differential equations/Numerical analysis
On steady-state preserving spectral methods for homogeneous Boltzmann equations
Comptes Rendus. Mathématique, Volume 353 (2015) no. 4, pp. 309-314.

In this note, we present a general way to construct spectral methods for the collision operator of the Boltzmann equation that preserves exactly the Maxwellian steady state of the system. We show that the resulting method is able to approximate with spectral accuracy the solution uniformly in time.

Dans cette note, nous présentons une construction générale de méthodes spectrales pour l'opérateur de collision de l'équation de Boltzmann permettant de préserver exactement les états stationnaires maxwelliens de ce type d'équations. Cette nouvelle approche est basée sur une décomposition de type « micro–macro » de la solution de l'équation, tout en restant très proche d'une méthode spectrale plus classique. Nous montrons que les méthodes obtenues sont capables d'approcher avec une précision spectrale, uniformément en temps, la solution de l'équation considérée, et nous présentons leur efficacité dans un test numérique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.01.015
Francis Filbet 1; Lorenzo Pareschi 2; Thomas Rey 3

1 Université Lyon-1 & Inria, Institut Camille-Jordan 43, boulevard du 11-Novembre-1918, 69622 Villeurbanne cedex, France
2 Mathematics and Computer Science Department, University of Ferrara, Italy
3 Center of Scientific Computation and Mathematical Modeling (CSCAMM), The University of Maryland, College Park, MD 20742-4015, USA
@article{CRMATH_2015__353_4_309_0,
     author = {Francis Filbet and Lorenzo Pareschi and Thomas Rey},
     title = {On steady-state preserving spectral methods for homogeneous {Boltzmann} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {309--314},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.015},
     language = {en},
}
TY  - JOUR
AU  - Francis Filbet
AU  - Lorenzo Pareschi
AU  - Thomas Rey
TI  - On steady-state preserving spectral methods for homogeneous Boltzmann equations
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 309
EP  - 314
VL  - 353
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2015.01.015
LA  - en
ID  - CRMATH_2015__353_4_309_0
ER  - 
%0 Journal Article
%A Francis Filbet
%A Lorenzo Pareschi
%A Thomas Rey
%T On steady-state preserving spectral methods for homogeneous Boltzmann equations
%J Comptes Rendus. Mathématique
%D 2015
%P 309-314
%V 353
%N 4
%I Elsevier
%R 10.1016/j.crma.2015.01.015
%G en
%F CRMATH_2015__353_4_309_0
Francis Filbet; Lorenzo Pareschi; Thomas Rey. On steady-state preserving spectral methods for homogeneous Boltzmann equations. Comptes Rendus. Mathématique, Volume 353 (2015) no. 4, pp. 309-314. doi : 10.1016/j.crma.2015.01.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.01.015/

[1] A. Bobylev; S. Rjasanow Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B, Fluids, Volume 18 (1999), pp. 869-887

[2] A. Bobylev Exact solutions of the Boltzmann equation, Dokl. Akad. Nauk SSSR, Volume 225 (1975), pp. 1296-1299

[3] C. Cercignani; R. Illner; M. Pulvirenti The Mathematical Theory of Dilute Gases, Springer-Verlag, 1994

[4] G. Dimarco; L. Pareschi Numerical methods for kinetic equations, Acta Numer., Volume 23 (2014), pp. 369-520

[5] F. Filbet; C. Mouhot Analysis of spectral methods for the homogeneous Boltzmann equation, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 1947-1980

[6] F. Filbet; C. Mouhot; L. Pareschi Solving the Boltzmann equation in Nlog2N, SIAM J. Sci. Comput., Volume 28 (2007) no. 3, pp. 1029-1053

[7] I. Gamba; S. Tharkabhushanam Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, J. Comput. Phys., Volume 228 (2009) no. 6, pp. 2012-2036

[8] S. Jin; S. Jin Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Mat. Univ. Parma, Volume 3 (June, 2010), pp. 177-216

[9] S. Jin; Y. Shi A micro–macro decomposition-based asymptotic-preserving scheme for the multispecies Boltzmann equation, SIAM J. Sci. Comput., Volume 31 (2009–2010) no. 6, pp. 4580-4606

[10] M. Krook; T. Wu Exact solutions of the Boltzmann equation, Phys. Fluids, Volume 20 (1977) no. 10, pp. 1589-1595

[11] M. Lemou; L. Mieussens A new asymptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., Volume 31 (2008) no. 10, pp. 334-368

[12] C. Mouhot; L. Pareschi Fast methods for the Boltzmann collision integral, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 1, pp. 71-76

[13] L. Pareschi; B. Perthame A spectral method for the homogeneous Boltzmann equation, Transp. Theory Stat. Phys., Volume 25 (1996), pp. 369-383

[14] L. Pareschi; G. Russo Numerical solution of the Boltzmann equation I. Spectrally accurate approximation of the collision operator, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1217-1245

Cited by Sources:

Comments - Policy