In this paper, we define a sequence of polynomials depending only on the choice of two analytic functions A and H in a neighborhood of zero. For a pair of compositional inverses A and B, we will show the identity , which generalize the Carlitz's identity on Bernoulli polynomials.
Dans ce papier, on définit une suite de polynômes dépendant seulement du choix de deux fonctions analytiques dans un voisinage de zéro. Pour une paire de fonctions réciproques A et B, on montre l'identité , qui généralise l'identité de Carlitz sur les polynômes de Bernoulli.
Accepted:
Published online:
Miloud Mihoubi 1; Yamina Saidi 1
@article{CRMATH_2015__353_9_773_0, author = {Miloud Mihoubi and Yamina Saidi}, title = {An identity on pairs of {Appell-type} polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {773--778}, publisher = {Elsevier}, volume = {353}, number = {9}, year = {2015}, doi = {10.1016/j.crma.2015.06.013}, language = {en}, }
Miloud Mihoubi; Yamina Saidi. An identity on pairs of Appell-type polynomials. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 773-778. doi : 10.1016/j.crma.2015.06.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.013/
[1] Exponential polynomials, Ann. Math., Volume 35 (1934), pp. 258-277
[2] Bernoulli and Eulerian numbers, Util. Math., Volume 15 (1979), pp. 51-88
[3] Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht, the Netherlands/Boston, USA, 1974
[4] A note on concavity properties of triangular arrays of numbers, J. Comb. Theory, Ser. A, Volume 13 (1972), pp. 135-139
[5] Bell polynomials and binomial type sequences, Discrete Math., Volume 308 (2008), pp. 2450-2459
[6] Bernoulli polynomials of the second kind and general order, Indian J. Pure Appl. Math., Volume 11 (1980) no. 10, pp. 1361-1368
[7] The Umbral Calculus, Dover Publ. Inc., New York, 2005
[8] On Appell sequences of polynomials of Bernoulli and Euler type, J. Math. Anal. Appl., Volume 341 (2008), pp. 1295-1310
[9] A new class of generalized Apostol–Bernoulli polynomials and some analogues of the Srivastava–Pintér addition theorem, Appl. Math. Lett., Volume 24 (2011), pp. 1888-1893
[10] Generalized higher order Bernoulli number pairs and generalized Stirling number pairs, J. Math. Anal. Appl., Volume 364 (2010), pp. 255-274
Cited by Sources:
Comments - Policy