[Une identité sur des paires de polynômes de type Appell]
Dans ce papier, on définit une suite de polynômes dépendant seulement du choix de deux fonctions analytiques dans un voisinage de zéro. Pour une paire de fonctions réciproques A et B, on montre l'identité , qui généralise l'identité de Carlitz sur les polynômes de Bernoulli.
In this paper, we define a sequence of polynomials depending only on the choice of two analytic functions A and H in a neighborhood of zero. For a pair of compositional inverses A and B, we will show the identity , which generalize the Carlitz's identity on Bernoulli polynomials.
Accepté le :
Publié le :
Miloud Mihoubi 1 ; Yamina Saidi 1
@article{CRMATH_2015__353_9_773_0, author = {Miloud Mihoubi and Yamina Saidi}, title = {An identity on pairs of {Appell-type} polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {773--778}, publisher = {Elsevier}, volume = {353}, number = {9}, year = {2015}, doi = {10.1016/j.crma.2015.06.013}, language = {en}, }
Miloud Mihoubi; Yamina Saidi. An identity on pairs of Appell-type polynomials. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 773-778. doi : 10.1016/j.crma.2015.06.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.013/
[1] Exponential polynomials, Ann. Math., Volume 35 (1934), pp. 258-277
[2] Bernoulli and Eulerian numbers, Util. Math., Volume 15 (1979), pp. 51-88
[3] Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht, the Netherlands/Boston, USA, 1974
[4] A note on concavity properties of triangular arrays of numbers, J. Comb. Theory, Ser. A, Volume 13 (1972), pp. 135-139
[5] Bell polynomials and binomial type sequences, Discrete Math., Volume 308 (2008), pp. 2450-2459
[6] Bernoulli polynomials of the second kind and general order, Indian J. Pure Appl. Math., Volume 11 (1980) no. 10, pp. 1361-1368
[7] The Umbral Calculus, Dover Publ. Inc., New York, 2005
[8] On Appell sequences of polynomials of Bernoulli and Euler type, J. Math. Anal. Appl., Volume 341 (2008), pp. 1295-1310
[9] A new class of generalized Apostol–Bernoulli polynomials and some analogues of the Srivastava–Pintér addition theorem, Appl. Math. Lett., Volume 24 (2011), pp. 1888-1893
[10] Generalized higher order Bernoulli number pairs and generalized Stirling number pairs, J. Math. Anal. Appl., Volume 364 (2010), pp. 255-274
Cité par Sources :
Commentaires - Politique