In this short paper, as applications of the well-known generalized maximum principle of Omori–Yau, we obtain new extensions of a classical theorem due to Moser [8]. More precisely, under suitable constraints on the norm of the gradient of the smooth function u that defines an entire CMC graph constructed over a fiber of a Riemannian product space of the type , we show that u must actually be constant.
Dans cette courte Note, nous obtenons de nouvelles extensions d'un théorème classique de Moser [8] comme application du principe bien connu du maximum généralisé de Omori–Yau. Plus précisément, soit u une fonction lisse définissant un graphe entier, CMC, construit sur une fibre d'un espace produit de Riemann du type . Nous montrons alors que, sous des contraintes convenables sur la norme du gradient de u, cette fonction doit en fait être constante.
Accepted:
Published online:
Arlandson M.S. Oliveira 1; Henrique F. de Lima 1
@article{CRMATH_2015__353_11_1017_0, author = {Arlandson M.S. Oliveira and Henrique F. de Lima}, title = {Moser-type results in {Riemannian} product spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1017--1021}, publisher = {Elsevier}, volume = {353}, number = {11}, year = {2015}, doi = {10.1016/j.crma.2015.09.001}, language = {en}, }
Arlandson M.S. Oliveira; Henrique F. de Lima. Moser-type results in Riemannian product spaces. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1017-1021. doi : 10.1016/j.crma.2015.09.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.09.001/
[1] A Bernstein-type theorem for Riemannian manifolds with a Killing field, Ann. Glob. Anal. Geom., Volume 31 (2007), pp. 363-373
[2] Sur une théorème de géometrie et ses applications aux équations dérivées partielles du type elliptique, Commun. Soc. Math. Kharkov, Volume 15 (1914), pp. 38-45
[3] Minimal cones and the Bernstein problem, Invent. Math., Volume 7 (1969), pp. 243-268
[4] Complete vertical graphs with constant mean curvature in semi-Riemannian warped products, Bull. Belg. Math. Soc. Simon Stevin, Volume 16 (2009), pp. 91-105
[5] Una estensione del teorema di Bernstein, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (1965), pp. 79-85
[6] On the oriented Plateau problem, Rend. Circ. Mat. Palermo, Volume 11 (1962), pp. 69-90
[7] On S. Bernstein's theorem on surfaces of nonpositive curvature, Proc. Amer. Math. Soc., Volume 1 (1950), pp. 80-85
[8] On Harnack's theorem for elliptic differential equations, Commun. Pure Appl. Math., Volume 14 (1961), pp. 577-591
[9] Isometric immersions of Riemannian manifolds, J. Math. Soc. Jpn., Volume 19 (1967), pp. 205-214
[10] Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983
[11] Minimal surfaces in , Ill. J. Math., Volume 46 (2002), pp. 1177-1195
[12] The half-space property and entire positive minimal graphs in , J. Differ. Geom., Volume 95 (2013), pp. 321-336
[13] Graphs with parallel mean curvature, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 449-458
[14] Minimal varieties in Riemannian manifolds, Ann. Math., Volume 88 (1968), pp. 62-105
[15] Harmonic functions on complete Riemannian manifolds, Commun. Pure Appl. Math., Volume 28 (1975), pp. 201-228
Cited by Sources:
Comments - Policy