Comptes Rendus
Optimal control
Pointwise second-order necessary conditions for optimal control problems evolved on Riemannian manifolds
Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 191-194.

In this Note, we study an optimal control problem on a Riemannian manifold. The control set in our problem is assumed to be a general Polish space, and therefore the classical variation technique fails. We obtain a pointwise second-order optimality condition, for which the curvature tensor of the manifold appears explicitly in the second-order dual equation.

Dans cette Note, nous étudions un problème du contrôle optimal sur une variété riemannienne. Dans ce problème, l'ensemble des contrôles est un espace de Polish général ; ainsi, la technique de variation classique ne s'applique pas ici. On obtient une condition d'optimalité ponctuelle du second ordre, pour laquelle le tenseur de courbure de la variété apparaît explicitement dans l'équation duale du second ordre.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.09.032

Qing Cui 1; Li Deng 1; Xu Zhang 2

1 School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan Province, China
2 School of Mathematics, Sichuan University, Chengdu 610064, Sichuan Province, China
@article{CRMATH_2016__354_2_191_0,
     author = {Qing Cui and Li Deng and Xu Zhang},
     title = {Pointwise second-order necessary conditions for optimal control problems evolved on {Riemannian} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {191--194},
     publisher = {Elsevier},
     volume = {354},
     number = {2},
     year = {2016},
     doi = {10.1016/j.crma.2015.09.032},
     language = {en},
}
TY  - JOUR
AU  - Qing Cui
AU  - Li Deng
AU  - Xu Zhang
TI  - Pointwise second-order necessary conditions for optimal control problems evolved on Riemannian manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 191
EP  - 194
VL  - 354
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2015.09.032
LA  - en
ID  - CRMATH_2016__354_2_191_0
ER  - 
%0 Journal Article
%A Qing Cui
%A Li Deng
%A Xu Zhang
%T Pointwise second-order necessary conditions for optimal control problems evolved on Riemannian manifolds
%J Comptes Rendus. Mathématique
%D 2016
%P 191-194
%V 354
%N 2
%I Elsevier
%R 10.1016/j.crma.2015.09.032
%G en
%F CRMATH_2016__354_2_191_0
Qing Cui; Li Deng; Xu Zhang. Pointwise second-order necessary conditions for optimal control problems evolved on Riemannian manifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 191-194. doi : 10.1016/j.crma.2015.09.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.09.032/

[1] A.A. Agrachev; Y.L. Sachkov Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., vol. 87, Springer-Verlag, Berlin, 2004

[2] D.J. Bell; D.H. Jacobson Singular Optimal Control Problems, Academic Press, London, New York, 1975

[3] B. Bonnard; J.B. Caillau; E. Trélat Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control Optim. Calc. Var., Volume 13 (2007), pp. 207-236

[4] D.J. Clements; B.D.O. Anderson Singular Optimal Control: The Linear-Quadratic Problem, Springer-Verlag, Berlin, New York, 1978

[5] Q. Cui; L. Deng; X. Zhang Second order necessary conditions for optimal control problems on Riemannian manifolds | arXiv

[6] H. Frankowska; D. Tonon Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints, SIAM J. Control Optim., Volume 51 (2013), pp. 3814-3843

[7] R.F. Gabasov; F.M. Kirillova High order necessary conditions for optimality, SIAM J. Control, Volume 10 (1972), pp. 127-168

[8] B.S. Goh Necessary conditions for singular extremals involving multiple control variables, SIAM J. Control, Volume 4 (1966), pp. 716-731

[9] H.-W. Knobloch Higher Order Necessary Conditions in Optimal Control Theory, Springer-Verlag, Berlin, New York, 1981

[10] A.J. Krener The high order maximal principle and its application to singular extremals, SIAM J. Control Optim., Volume 15 (1977), pp. 256-293

[11] H. Lou Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure, Discrete Contin. Dyn. Syst., Ser. B, Volume 14 (2010), pp. 1445-1464

[12] L.S. Pontryagin; V.G. Boltyanskii; R.V. Gamkrelidze; E.F. Mischenko Mathematical Theory of Optimal Processes, Wiley, New York, 1962

[13] H. Schättler; U. Ledzewicz Geometric Optimal Control, Theory, Methods and Examples, Interdiscip. Appl. Math., vol. 38, Springer, New York, 2012

[14] J.F. Bonnans; A. Hermant Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009), pp. 561-598

[15] D. Hoehener Variational approach to second-order optimality conditions for control problems with pure state constraints, SIAM J. Control Optim., Volume 50 (2012), pp. 1139-1173

[16] Z. Páles; V. Zeidan Optimal control problems with set-valued control and state constraints, SIAM J. Optim., Volume 14 (2003), pp. 334-358

Cited by Sources:

Comments - Policy