Let us define, for a compact set , the Minkowski averages of A:
Pour tout ensemble compact , définissons ses moyennes de Minkowski par
Accepted:
Published online:
Matthieu Fradelizi 1; Mokshay Madiman 2; Arnaud Marsiglietti 3; Artem Zvavitch 4
@article{CRMATH_2016__354_2_185_0, author = {Matthieu Fradelizi and Mokshay Madiman and Arnaud Marsiglietti and Artem Zvavitch}, title = {Do {Minkowski} averages get progressively more convex?}, journal = {Comptes Rendus. Math\'ematique}, pages = {185--189}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.12.005}, language = {en}, }
TY - JOUR AU - Matthieu Fradelizi AU - Mokshay Madiman AU - Arnaud Marsiglietti AU - Artem Zvavitch TI - Do Minkowski averages get progressively more convex? JO - Comptes Rendus. Mathématique PY - 2016 SP - 185 EP - 189 VL - 354 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2015.12.005 LA - en ID - CRMATH_2016__354_2_185_0 ER -
Matthieu Fradelizi; Mokshay Madiman; Arnaud Marsiglietti; Artem Zvavitch. Do Minkowski averages get progressively more convex?. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 185-189. doi : 10.1016/j.crma.2015.12.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.005/
[1] Fractional generalizations of Young and Brunn–Minkowski inequalities (C. Houdré; M. Ledoux; E. Milman; M. Milman, eds.), Concentration, Functional Inequalities and Isoperimetry, Contemp. Math., vol. 545, Amer. Math. Soc., 2011, pp. 35-53
[2] Asymptotic behavior of products in locally compact abelian groups, Trans. Amer. Math. Soc., Volume 145 (1969), pp. 171-204
[3] M. Fradelizi, M. Madiman, A. Marsiglietti, A. Zvavitch, On the monotonicity of Minkowski sums towards convexity, Preprint.
[4] A superadditivity and submultiplicativity property for cardinalities of sumsets, Combinatorica, Volume 30 (2010) no. 2, pp. 163-174
[5] Information inequalities for joint distributions, with interpretations and applications, IEEE Trans. Inf. Theory, Volume 56 (2010) no. 6, pp. 2699-2713
[6] A measure of convexity for compact sets, Pac. J. Math., Volume 58 (1975) no. 2, pp. 617-625
[7] Quasi-equilibria in markets with non-convex preferences, Econometrica, Volume 37 (1969) no. 1, pp. 25-38
Cited by Sources:
Comments - Policy