Comptes Rendus
Partial differential equations
A local regularity condition involving two velocity components of Serrin-type for the Navier–Stokes equations
[Une condition de la régularité locale impliquant deux composantes de la vitesse de type Serrin pour les équations de Navier–Stokes]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 167-174.

Le présent papier traite le problème de la régularité locale de solutions faibles à l'équation de Navier–Stokes en Ω×(0,T) de terme de force f en L2. Nous prouvons que u est forte dans un sous-cylindre QrΩ×(0,T) si deux composantes de la vitesse u1, u2 satisfont une condition de type Serrin.

The present paper deals with the problem of local regularity of weak solutions to the Navier–Stokes equation in Ω×(0,T) with forcing term f in L2. We prove that u is strong in a sub-cylinder QrΩ×(0,T) if two velocity components u1, u2 satisfy a Serrin-type condition.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.10.020

Hyeong-Ohk Bae 1 ; Jörg Wolf 2

1 Department of Financial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-749, Republic of Korea
2 Department of Mathematics, Humboldt University Berlin, Unter den Linden 6, 10099 Berlin, Germany
@article{CRMATH_2016__354_2_167_0,
     author = {Hyeong-Ohk Bae and J\"org Wolf},
     title = {A local regularity condition involving two velocity components of {Serrin-type} for the {Navier{\textendash}Stokes} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {167--174},
     publisher = {Elsevier},
     volume = {354},
     number = {2},
     year = {2016},
     doi = {10.1016/j.crma.2015.10.020},
     language = {en},
}
TY  - JOUR
AU  - Hyeong-Ohk Bae
AU  - Jörg Wolf
TI  - A local regularity condition involving two velocity components of Serrin-type for the Navier–Stokes equations
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 167
EP  - 174
VL  - 354
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2015.10.020
LA  - en
ID  - CRMATH_2016__354_2_167_0
ER  - 
%0 Journal Article
%A Hyeong-Ohk Bae
%A Jörg Wolf
%T A local regularity condition involving two velocity components of Serrin-type for the Navier–Stokes equations
%J Comptes Rendus. Mathématique
%D 2016
%P 167-174
%V 354
%N 2
%I Elsevier
%R 10.1016/j.crma.2015.10.020
%G en
%F CRMATH_2016__354_2_167_0
Hyeong-Ohk Bae; Jörg Wolf. A local regularity condition involving two velocity components of Serrin-type for the Navier–Stokes equations. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 167-174. doi : 10.1016/j.crma.2015.10.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.020/

[1] H.-O. Bae; H.J. Choe L-bound of weak solutions to Navier–Stokes equations, Taejon, 1996 (Lecture Notes Ser.), Volume vol. 39 (1997) (13 p)

[2] H.-O. Bae; H.J. Choe A regularity criterion for the Navier–Stokes equations, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 1173-1187

[3] H. Beirão da Veiga On the smoothness of a class of weak solutions to the Navier–Stokes equations, J. Math. Fluid Mech., Volume 2 (2000) no. 4, pp. 315-323

[4] D. Chae; H.J. Choe Regularity of solutions to the Navier–Stokes equation, Electron. J. Differ. Equ., Volume 1999 (1999) no. 5, pp. 1-7

[5] D. Chae; K. Kang; J. Lee On the interior regularity of suitable weak solutions to the Navier–Stokes equations, Commun. Partial Differ. Equ., Volume 32 (2007) no. 7–9, pp. 1189-1207

[6] E.B. Fabes; B.F. Jones; N.M. Riviere The initial value problem for the Navier–Stokes equations with data in Lp, Arch. Ration. Mech. Anal., Volume 45 (1972), pp. 222-240

[7] G. Galdi An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I, Linearized Steady Problems, vol. 38, Springer-Verlag, New York, 1994

[8] G. Galdi; C. Simader; H. Shor On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl. (4), Volume 167 (1994), pp. 147-1633

[9] I. Kukavica; M. Ziane One-component regularity for the Navier–Stokes equations, Nonlinearity, Volume 19 (2006) no. 2, pp. 453-469

[10] J. Neustupa; A. Novotný; P. Penel Regularity of a suitable weak solution to the Navier–Stokes equations as a consequence of regularity of one velocity component (A. Sequeira; H. Beirão da Veiga; J.H. Videman, eds.), Applied Nonlinear Analysis, Kluwer/Plenum, New York, 1999, pp. 391-402

[11] J. Neustupa; M. Pokorny An interior regularity criterion for an axially symmetric suitable weak solution to the Navier–Stokes equations, J. Math. Fluid Mech., Volume 2 (2000), pp. 381-399

[12] J. Serrin On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 9 (1962), pp. 187-195

[13] M. Struwe On partial regularity results for the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988), pp. 437-458

[14] J. Wolf On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations, Ann. Univ. Ferrara, Volume 61 (2015) no. 1, pp. 149-171

[15] J. Wolf, On the local pressure of the Navier–Stokes equations and related systems (2015), submitted for publication.

[16] Y. Zhou A new regularity criterion for the Navier–Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., Volume 9 (2002) no. 4, pp. 563-578

  • Jae-Myoung Kim Some regularity criteria of a weak solution to the 3D Navier–Stokes equations in a domain, Archiv der Mathematik, Volume 117 (2021) no. 2, p. 215 | DOI:10.1007/s00013-021-01613-0
  • D. Chae; J. Wolf On the Serrin-Type Condition on One Velocity Component for the Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 240 (2021) no. 3, p. 1323 | DOI:10.1007/s00205-021-01636-5
  • Hugo Beirão da Veiga; Jiaqi Yang Regularity Criteria for Navier-Stokes Equations with Slip Boundary Conditions on Non-flat Boundaries via Two Velocity Components, Advances in Nonlinear Analysis, Volume 9 (2019) no. 1, p. 633 | DOI:10.1515/anona-2020-0017
  • Hugo Beirão da Veiga; Josef Bemelmans; Johannes Brand On a two components condition for regularity of the 3D Navier–Stokes equations under physical slip boundary conditions on non-flat boundaries, Mathematische Annalen, Volume 374 (2019) no. 3-4, p. 1559 | DOI:10.1007/s00208-018-1755-z
  • Hyeong-Ohk Bae Regularity of the 3D Navier–Stokes equations with viewpoint of 2D flow, Journal of Differential Equations, Volume 264 (2018) no. 7, p. 4889 | DOI:10.1016/j.jde.2017.12.026
  • Yanqing Wang; Gang Wu; Daoguo Zhou Some Interior Regularity Criteria Involving Two Components for Weak Solutions to the 3D Navier–Stokes Equations, Journal of Mathematical Fluid Mechanics, Volume 20 (2018) no. 4, p. 2147 | DOI:10.1007/s00021-018-0402-5
  • H. Beirão da Veiga On the extension to slip boundary conditions of a Bae and Choe regularity criterion for the Navier–Stokes equations. The half-space case, Journal of Mathematical Analysis and Applications, Volume 453 (2017) no. 1, p. 212 | DOI:10.1016/j.jmaa.2017.03.089
  • Hyeong-Ohk Bae; Jörg Wolf Sufficient conditions for local regularity to the generalized Newtonian fluid with shear thinning viscosity, Zeitschrift für angewandte Mathematik und Physik, Volume 68 (2017) no. 1 | DOI:10.1007/s00033-016-0751-y

Cité par 8 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: