[Un critère simple d'instabilité transverse d'ondes non linéaires]
Nous montrons un critère simple d'instabilité transverse linéaire d'ondes non linéaires d'équations aux dérivées partielles posées dans un domaine spatial
We prove a simple criterion for transverse linear instability of nonlinear waves for partial differential equations in a spatial domain
Accepté le :
Publié le :
Mots-clés : Instabilité transverse, Dynamique spatiale, Équations de Davey–Stewartson, Rupture de dimension
Cyril Godey 1
@article{CRMATH_2016__354_2_175_0, author = {Cyril Godey}, title = {A simple criterion for transverse linear instability of nonlinear waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {175--179}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.10.017}, language = {en}, }
Cyril Godey. A simple criterion for transverse linear instability of nonlinear waves. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 175-179. doi : 10.1016/j.crma.2015.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.017/
[1] On the evolution of packets of water waves, J. Fluid Mech., Volume 92 (1979) no. 04, pp. 691-715
[2] Methods of Bifurcation Theory, Springer, 1982
[3] On the transition from two-dimensional to three-dimensional water waves, Stud. Appl. Math., Volume 104 (2000) no. 2, pp. 91-127
[4] Transverse instability of gravity-capillary line solitary water waves, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001) no. 5, pp. 421-426
[5] A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., Volume 360 (2002) no. 1799, pp. 2189-2243
[6] A dimension-breaking phenomenon for water waves with weak surface tension, Arch. Ration. Mech. Anal. (2015) (preprint in press) | DOI
[7] Transverse spectral stability of small periodic traveling waves for the KP equation, Stud. Appl. Math., Volume 126 (2011) no. 2, pp. 157-185
[8] Transverse dynamics of two-dimensional gravity-capillary periodic water waves, J. Dyn. Differ. Equ. (2015) (in press) | DOI
[9] Transverse instability of periodic traveling waves in the generalized Kadomtsev–Petviashvili equation, SIAM J. Math. Anal., Volume 42 (2010) no. 6, pp. 2681-2702
[10] A simple criterion of transverse linear instability for solitary waves, Math. Res. Lett., Volume 17 (2010) no. 1, pp. 157-170
[11] Transverse instability of the line solitary water-waves, Invent. Math., Volume 184 (2011) no. 2, pp. 257-388
[12] Transverse instability for periodic waves of KP-I and Schrödinger equations, Indiana Univ. Math. J., Volume 61 (2012) no. 2, pp. 461-492
Cité par Sources :
Commentaires - Politique