In this note, we announce some new results on quantitative countable porosity of the branch set of a quasiregular mapping in very general metric spaces. As applications, we solve a recent conjecture of Fässler et al., an open problem of Heinonen–Rickman, and an open question of Heinonen–Semmes.
Dans cette note, nous annonçons de nouveaux résultats quant à la porosité dénombrable quantitative de l'ensemble des branchements d'une application quasi régulière dans un cadre très général d'espaces métriques. Comme applications de nos résultats, nous répondons à une conjecture récente de Fässler et al., à un problème ouvert de Heinonen–Rickman et à une question ouverte de Heinonen–Semmes.
Accepted:
Published online:
Chang-Yu Guo 1; Marshall Williams 2
@article{CRMATH_2016__354_2_155_0, author = {Chang-Yu Guo and Marshall Williams}, title = {The branch set of a quasiregular mapping between metric manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {155--159}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.10.022}, language = {en}, }
Chang-Yu Guo; Marshall Williams. The branch set of a quasiregular mapping between metric manifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 155-159. doi : 10.1016/j.crma.2015.10.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.022/
[1] Smooth quasiregular mappings with branching, Publ. Math. Inst. Hautes Études Sci., Volume 100 (2004), pp. 153-170
[2] Quasiregular mappings on subRiemannian manifolds, J. Geom. Anal. (2015) (forthcoming) | DOI
[3] Bounding homotopy types by geometry, Ann. Math. (2), Volume 128 (1988) no. 1, pp. 195-206
[4] Geometric finiteness theorems via controlled topology, Invent. Math., Volume 99 (1990) no. 1, pp. 205-213
[5] Mappings of finite distortion between metric measure spaces, Conform. Geom. Dyn., Volume 19 (2015), pp. 95-121
[6] C.Y. Guo, M. Williams, Porosity of the branch set of discrete open mappings with controlled linear dilatation, preprint, 2015.
[7] C.Y. Guo, S. Nicolussi Golo, M. Williams, Quasiregular mappings between subRimannian manifolds, preprint, 2015.
[8] The branch set of a quasiregular mapping, Beijing, 2002, Higher Education Press Limited Company, Beijing (2002), pp. 691-700
[9] Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998), pp. 1-61
[10] Quasiregular maps with wild branch sets, Topology, Volume 37 (1998) no. 1, pp. 1-24
[11] Geometric branched covers between generalized manifolds, Duke Math. J., Volume 113 (2002) no. 3, pp. 465-529
[12] Thirty-three yes or no questions about mappings, measures, and metrics, Conform. Geom. Dyn., Volume 1 (1997), pp. 1-12
[13] On the locally branched Euclidean metric gauge, Duke Math. J., Volume 114 (2002) no. 1, pp. 15-41
[14] Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I, Volume 448 (1969), pp. 1-40
[15] Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I, Volume 488 (1971), pp. 1-31
[16] On Newman's theorem for finite-to-one open mappings on manifolds, Proc. Amer. Math. Soc., Volume 87 (1983) no. 3, pp. 561-566
[17] Quasiregular mappings to generalized manifolds, J. Anal. Math., Volume 109 (2009), pp. 33-79
[18] A finiteness theorem for metric spaces, J. Differ. Geom., Volume 31 (1990) no. 2, pp. 387-395
[19] Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3), vol. 26, Springer, Berlin, 1993
[20] The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 1 (1975) no. 2, pp. 297-307
[21] Finding curves on general spaces through quantitative topology, with applications for Sobolev and Poincaré inequalities, Sel. Math. New Ser., Volume 2 (1996), pp. 155-295
[22] Modulus and capacity inequalities for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I, Volume 509 (1972), pp. 1-14
[23] M. Williams, Definition of quasiregularity in metric measure spaces, preprint, 2015.
[24] M. Williams, Bi-Lipschitz embeddability of BLD branched spaces, preprint, 2015.
Cited by Sources:
Comments - Policy