Comptes Rendus
Harmonic analysis/Functional analysis
Strong convergence in the weighted setting of operator-valued Fourier series defined by the Marcinkiewicz multipliers
Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 181-184.

Suppose that 1<p< and let w be a bilateral weight sequence satisfying the discrete Muckenhoupt Ap weight condition. We show that every Marcinkiewicz multiplier ψ:TC has an associated operator-valued Fourier series which serves as an analogue in B(p(w)) of the usual Fourier series of ψ, and this operator-valued Fourier series is everywhere convergent in the strong operator topology. In particular, we deduce that the partial sums of the usual Fourier series of ψ are uniformly bounded in the Banach algebra of Fourier multipliers for p(w). These results transfer to the framework of invertible, modulus mean-bounded operators acting on Lp spaces of sigma-finite measures.

Soient 1<p< et w un poids dans la classe Ap(Z). Cette note établit (dans la topologie forte des opérateurs) la convergence des séries de Fourier (à valeurs dans B(p(w))) pour les « convolutions de Stieltjes », où ces convolutions sont déterminées par les fonctions ψ appartenant à la classe de Marcinkiewicz M1(T). Les propriétés de convergence pour ces séries de Fourier ayant valeurs dans B(p(w)) révèlent des propriétés de convergence des séries de Fourier traditionnelles pour les fonctions ψM1(T). En particulier, les sommes partielles de la série de Fourier traditionnelle pour un ψM1(T) quelconque sont uniformément bornées dans la norme des p-multiplicateurs pour p(w). Ces résultats se transfèrent immêdiatement au cadre d'une bijection linéaire arbitraire T telle que T soit un opérateur préservant la disjonction dont le module linéaire est à moyennes bornées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.11.001
Keywords: Marcinkiewicz class, Fourier multiplier, Fourier series, Modulus mean-bounded operator, Shift operator, $ {A}_{p}$ weight sequence

Earl Berkson 1

1 Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801, USA
@article{CRMATH_2016__354_2_181_0,
     author = {Earl Berkson},
     title = {Strong convergence in the weighted setting of operator-valued {Fourier} series defined by the {Marcinkiewicz} multipliers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {181--184},
     publisher = {Elsevier},
     volume = {354},
     number = {2},
     year = {2016},
     doi = {10.1016/j.crma.2015.11.001},
     language = {en},
}
TY  - JOUR
AU  - Earl Berkson
TI  - Strong convergence in the weighted setting of operator-valued Fourier series defined by the Marcinkiewicz multipliers
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 181
EP  - 184
VL  - 354
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2015.11.001
LA  - en
ID  - CRMATH_2016__354_2_181_0
ER  - 
%0 Journal Article
%A Earl Berkson
%T Strong convergence in the weighted setting of operator-valued Fourier series defined by the Marcinkiewicz multipliers
%J Comptes Rendus. Mathématique
%D 2016
%P 181-184
%V 354
%N 2
%I Elsevier
%R 10.1016/j.crma.2015.11.001
%G en
%F CRMATH_2016__354_2_181_0
Earl Berkson. Strong convergence in the weighted setting of operator-valued Fourier series defined by the Marcinkiewicz multipliers. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 181-184. doi : 10.1016/j.crma.2015.11.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.11.001/

[1] E. Berkson Spectral theory and operator ergodic theory on super-reflexive Banach spaces, Stud. Math., Volume 200 (2010), pp. 221-246

[2] E. Berkson Rotation methods in operator ergodic theory, N.Y. J. Math., Volume 17 (2011), pp. 21-39 http://nyjm.albany.edu/j/2011/17-2v.pdf (located online at)

[3] E. Berkson Marcinkiewicz multipliers of higher variation and summability of operator-valued Fourier series, Stud. Math., Volume 222 (2014), pp. 123-155

[4] J. Duoandikoetxea Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal., Volume 260 (2011), pp. 1886-1901

Cited by Sources:

Comments - Policy